欢迎来到天天文库
浏览记录
ID:38865601
大小:143.50 KB
页数:5页
时间:2019-06-20
《2.2算术平方根》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2.2《平方根》第一课时教学设计(一)创设情境,引入新知活动一:复习旧知问题1:老师手中有一正方形图片,若已知边长是3时,同学们说其面积是多少呢?生:32=9并在黑板上写出.问题2:以上算式属于我们学过的什么运算?在此算式中存在几个量?分别是什么?生:乘方运算;存在三个量;底数、指数和幂.问题3:乘方运算是知道了哪些量求哪个量的运算?生:底数、指数求幂的运算.活动二:探究新知问题4:若正方形的面积是9时,同学们说其边长是多少呢?师:同学们我们比较这两种运算,有什么区别?生:第一种运算,是知道了底数、指数求幂的运算即乘方运算;
2、第二种运算,是知道了幂、指数求底数的运算.师:很好,第二种运算就是今天我们要学习的一种新运算---求一个正数的算术平方根的运算.(板书1)§2.2算术平方根设计意图:通过利用旧知,引入新知.学生乐于去做,敢于发言,同时,让学生感受到,通过自己的探究,“玩”出了很多意想不到的收获,使数学课不再枯燥.注重了用数学的方法去研究问题,从数学的角度去思考问题,使数学课更具有数学味,同时,也揭示了本节课的教学重点.问题5:若正方形的面积是3时,同学们说其边长m又是多少呢?3m师:通过上节课的学习我们知道它的范围是多少?它具体是多少,你知
3、道吗?生:1.7<m<1.8,1.73<m<1.74,…;是无限不循环小数.师:同学们,这是我们在小学遇到过“π”的基础上,又一次遇到不能准确的去表示一个数,为了能精确的表示它,我们引进一个新的记号“”,读作“根号”.我们就用来表示m,这就好比小学中我们学过的圆周率3.1415926…,它就是一个无限不循环小数,为了能表示它,就用一个符号“π”来表示一样的道理.设计意图:通过自主探索,让学生亲身体验概念的形成过程,感受到概念引入的必要性,充分体现了学生的主体作用.结论:像以上算式m2=3中,我们就把正数m叫做3的算术平方根.
4、记作:“”,即m=问题6:请仿照上面表示“若m2=3,则m=”的办法,试着分别表示出下列正数x.(1)x2=3(2)x2=5(3)x2=7(4)x2=a(a>0)设计意图:算术平方根的概念是由具体到抽象、由特殊到一般而形成的.通过问题6的尝试,培养学生抽象概括的能力.(二)多方联动、理解新知师:现在我们一起来概括算术平方根的定义:(板书2):一般的,一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“”读作“根号a”.(板书3):0的算术平方根是0,即=0.问题1:用含根号的式子表示下列各数的算术平方
5、根.(多媒体出示)(1)16(2)25(3)7(4)14(学生独立完成后交流,并不失时机地追问)师:通过此问题,你会有什么新的发现?生:象=4,=5一样,这些正数可以写成有理数平方的形式,其算术平方根就可以用一个非负有理数表示,而有些正数写不成有理数平方的形式,其算术平方根只能用根号表示,如上面的7和14,它们的算术平方根只能分别写成、.设计意图:强化对算术平方根概念的认识,当细则细,为求出数的算术平方根搭建引桥,目的在于慢中求进,扎实有效.师:根据同学们的认识,我们一起来完成例题1.例题1:求下列各数的算术平方根:(多媒体
6、出示)(1)1(2)900解:(2)(老师板演第2题的解题过程)∵302=900∴900的算术平方根是30即=30设计意图:规范学生解题的格式,让学生明确解题的思路.(3)106(4)解:(4)(老师板演第4题)∵∴的算术平方根是即(5)10设计意图:体验求一个正数的算术平方根的过程,摸索利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如:10的算术平方根是.同时,突出了本节课的教学重点.思考:通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪
7、一种运算来求的?(多媒体出示)设计意图:让学生感知平方运算和求正数的算术平方根是互逆的关系.问题2:仿照“例题1”,请同学们自己编写两道类似的题目,供其他同学解答.设计意图:要把所学的新知识,融入到自己已有的知识结构中来,通过编题,增进学生对概念的理解,力求做到学以致用,举一反三.师:同学们,我们都能编题了,真了不得!看来下面的实际问题已不在话下.(出示例题2)例题2:自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?(多媒体出示)(多媒体演
8、示解题过程)解:将h=19.6代入公式h=4.9t2得t2=4,所以t==2(秒),即铁球到达地面需要2秒.设计意图:用算术平方根的知识解决实际问题,把数学与生活实施了链接,以增进学生对数学价值的体悟.问题3:有意义吗?为什么?(多媒体出示)分析:无意义,因为任何数的平方都是非负数,即a2
此文档下载收益归作者所有