欢迎来到天天文库
浏览记录
ID:38634300
大小:276.50 KB
页数:15页
时间:2019-06-16
《2011届高考数学总复习测评》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一节两个基本计数原理基础梳理1.分类计数原理(加法原理)完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有mn种不同的方法,那么完成这件事共有N=种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=种不同的方法.典例分析题型一分类计数原理和分步计数原理的简单应用【例1】甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1
2、)若借一本书,则有多少种不同的借法?(2)若每科各借一本,则有多少种不同的借法?(3)若借两本不同学科的书,则有多少种不同的借法?分析仔细区分是“分类”还是“分步”.解(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学
3、书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.学后反思正确区分和使用两个原理是学好本单元的关键.区分“分类”与“分步”的依据在于能否“一次性”完成.若能“一次性”完成,则不需“分步”,只需分类;否则就分步处理.举一反三1.(2009·通州调研)若5名运动员争取3个项目冠军,则不同
4、的获奖结果有种.答案:125解析:从得冠军角度考虑,分三步,每个项目得冠军的结果有5种,共种.题型二两个计数原理的综合应用【例2】(14分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?分析(1)是从四个班的34人中选一人,应分类求解;(2)是从各班中选一人,共选4人,应分步求解;(3)是先根据不同班级分类,再分步从两个班级中各选1人.解(1)分四类,第一类,从一班学生
5、中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法,所以,共有不同的选法N=7+8+9+10=34(种).4′(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5040(种)…………………………………8′(3)分六类,每类又分两步,从一班、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;
6、从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法……………………….12′所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种)………..14′学后反思对于复杂问题,不能只用分类加法计数原理或分步乘法计数原理解决时,可以综合应用两个原理,可以先分类,在某一类中再分步,也可先分步,在某一步中再分类.举一反三2.某通信公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠
7、卡”,则这组号码中“优惠卡”的个数为.答案:5904解析:10000个号码中不含4、7的有=4096,故这组号码中“优惠卡”的个数为10000-4096=5904.【例3】(2009·辽宁模拟改编)一生产过程有四道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有.分析首先根据第一道工序将问题分为两类,对两类分别求解,再由分类计数原理求解.解依题意知,若第一道
此文档下载收益归作者所有