欢迎来到天天文库
浏览记录
ID:38614128
大小:1019.50 KB
页数:16页
时间:2019-06-16
《13.4 课题学习 最短路径问题1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.同学们,你想知道她是如何解决这个问题的吗?BAl问题情境13.4课题学习最短路径问题陕州区初级实验中学聂亚芬学习目标1.能利用轴对称解决简单的最短路径问题.(难点)2.体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点)
2、自主学习1.如图,连接A、B两点的所有连线中,哪条最短?为什么?AB①②③②最短,因为两点之间,线段最短2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?PlABCDPC最短,因为垂线段最短3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?三角形三边关系:两边之和大于第三边;4.如图,如何做点A关于直线l的对称点?AlA′归纳最短路径问题“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.现实生活中经常涉及到选择最短路径问题。A
3、B①②③PlABCD合作探究如图,将军从点A地出发,到一条笔直的河边l饮马,然后到B地,将军到河边的什么地方饮马,可使所走的路径最短?你能将这个问题抽象为数学问题吗?C抽象成ABl数学问题作图问题:在直线l上求作一点C,使AC+BC最短问题.实际问题ABl问题1现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?lABC根据是“两点之间,线段最短”,可知这个交点即为所求.连接AB,与直线l相交于一点C.问题2如果点A,B分别是直线l同侧的两个点,又应该如何解决?想一想:对于问题2,如何将点
4、B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?ABl利用轴对称,作出点B关于直线l的对称点B′.方法揭晓作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.ABlB′C你能用所学的知识证明AC+BC最短吗?在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.ABlB′CC′质疑探究证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知BC=B′C,BC′=B′C′.∴AC+B
5、C=AC+B′C=AB′,∴AC′+BC′=AC′+B′C′.知识巩固1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是()PQlAMPQlBMPQlCMPQlDMD2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是米.ACBD河1000课堂小结原理线段公理和垂线段最短牧马人饮马问题解题方法最短路径问题轴
6、对称知识+线段公理方法总结解决最短路径问题问题时,1.通常我们利用轴对称知识将同侧问题转化成异侧问题2.将折线问题转化成直线问题。1.小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.若要使厂部到A,B两村的水管最短,应建在什么地方?请画出图形。2.一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径。ABCPQ山河岸大桥堂清检测
此文档下载收益归作者所有