1、第3课时 三边成比例的两个三角形相似【学习目标】1.掌握三边对应成比例判定两个三角形相似的方法.2.会选择合适的三角形相似的判定方法解决简单问题.【学习重点】掌握相似三角形的判定定理:“三边成比例的两个三角形相似”.【学习难点】会准确运用三角形相似的判定定理来判断、证明及计算.情景导入 生成问题1.两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似.2.下列说法正确的是( C )A.有一个角相等的两个等腰三角形相似B.所有的直角三角形相似C.有一个锐角对应相等的两个直角三角形相似D.所有的等腰三角形相似3.已知△ABC如图所示,则与△ABC相似的是图中
2、的( C ),) ,A) ,B) ,C) ,D)自学互研 生成能力师:我们上两节课学过什么定理?师生共同回忆,在上两节课的探索中,我们知道:三角对应相等、三边对应成比例的两个三角形相似;两角分别相等的两个三角形相似;两边成比例及夹角相等的两个三角形相似.师:那么判定三角形相似还有没有其他条件呢?今天我们再次踏上探索之旅途.画△ABC与△A′B′C′,使、和都等于给定的值k.(1)设法比较∠A与∠A′的大小.(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.生:按照上面的步骤进行,这里的k由自己定,为了节约时间,一个组取一个相
5、:△ABC∽△EFG.利用判定定理3.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索三边成比例的两个三角形相似知识模块二 判定定理3的应用检测反馈 达成目标1.下列条件不能判定△ABC与△ADE相似的是( D )A.=,∠CAE=∠BADB.∠B=∠ADE,∠CAE=∠BADC.==D.=,∠C=∠E2.下列四个三角形,与右图中
6、的三角形相似的是( B ),A) ,B),C),D)3.网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试用三边对应成比例的方法说明△ABC∽△DEF.证明:计算得AC=,BC=,AB=4,DF=2,EF=2,ED=8,∴===2,∴△ABC∽△DEF.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:___________________________________________________