欢迎来到天天文库
浏览记录
ID:38563316
大小:14.16 KB
页数:3页
时间:2019-06-15
《导入.docx导入》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数y=ax2+bx+c的图象和性质白学富教学目标: 1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。 2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。 3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。 重点难点: 重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。 难点:理解二次函数y=ax2+bx+c(a≠0)的性质以
2、及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。 教学过程: 一、提出问题 1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗? (函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。 2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系? (函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的) 3.函数y=-4(x-2)2
3、+1具有哪些性质? (当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1) 4.不画出图象,你能直接说出函数y=-x2+x-1的图象的开口方向、对称轴和顶点坐标吗? [因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)] 5.你能画出函数y=-x2+x-1的图象,并说明这个函数具有哪些性质吗? 二、解决问题 由以上第4个问题的解决,我们已经知
4、道函数y=-x2+x-1的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-1的图象,进而观察得到这个函数的性质。 解:(1)列表:在x的取值范围内列出函数对应值表; x … -2 -1 0 1 2 3 4 … y … -6 -4 -2 -2 -2 -4 -6 … (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。 (3)连线:用光滑的曲线顺次连接各点,
5、得到函数y=-x2+x-1的图象,如图所示。 说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。 (2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。 让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质; 当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小; 当x=1时,函数取得最大值,最
6、大值y=-2 三、做一做 1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗? 教学要点 (1)在学生画函数图象的同时,教师巡视、指导; (2)叫一位或两位同学板演,学生自纠,教师点评。 2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 教学要点 (1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的
7、最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识; 当a>0时,开口向上,当a<0时,开口向下。 对称轴是x=-b/ 2a ,顶点坐标是(-,) 四、课堂练习 课本练习第1、2、3题。 五
8、、小结 通过本节课的学习,你学到了什么知识?有何体会? 六、作业 1.同步练习 2.选用课时作业优化设计。 课时作业优化设计1.填空: (1)抛物线y=x2-2x+2的顶点坐标是_______; (2)抛物线y=2x2-2x-的开口_______,对称轴是_______; (3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______; (4)抛物线y=-x2+2x
此文档下载收益归作者所有