资源描述:
《《相交线与平行线》复习课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章相交线与平行线(复习课)一、教材分析:(一)学习目标:一、教学目标1.知道第五章相交线与平行线的知识结构图.2.通过基本训练,巩固第五章所学的基本内容.3.通过典型例题和综合运用,加深理解第五章所学的基本内容,发展能力.(二)学习重点和难点:1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用.(三)教学时间:两课时二、归纳总结,完善认识(一)(二)、基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你可以在课本中找,这些内容是本章的重点内容,需要认真理解;先用铅笔填,订正时用其它笔填)(1)在同一平面内,两条直线有_
2、______、_______两种位置关系.(2)有一条公共边并且互补的两个角,是________角;两条直线相交形成的相对的两个角,是_______角.(3)对顶角的性质是:对顶角________.(4)两条直线互相垂直,其中一条直线叫做另一条直线的______,它们的交点叫做________.(5)垂线的性质:过一点有且只有一条直线与已知直线_______.(6)垂线段的性质是:连接直线外一点与直线上各点的所有线段中,__________最短.(7)直线外一点到这条直线的垂线段的长度,叫做_________________________.(8
3、)平行公理:经过直线外一点,____________一条直线与这条直线平行.(9)如果两条直线都与第三直线平行,那么这两条直线_____________.(10)平行线判定方法1:两条直线被第三条直线所截,如果___________________,那么这两条直线平行.(简称:_____________________,________________________)(11)平行线判定方法2:两条直线被第三条直线所截,如果____________________,那么这两条直线平行.(简称:_____________________,_____
4、___________________)(12)平行线判定方法3:两条直线被第三条直线所截,如果____________________,那么这两条直线平行.(简称:_____________________,________________________)(13)平行线性质1:两条平行线被第三条直线所截,______________________.(14)平行线性质2:两条平行线被第三条直线所截,______________________.(15)平行线性质3:两条平行线被第三条直线所截,______________________.(1
5、6)判断一件事情的语句,叫做_________;判断正确的命题是______命题,判断错误的命题是______命题;经过推理得到的真命题叫做___________;命题常常可以写成“如果……那么……”的形式,“如果”后接的部分是_________,“那么”后接的部分是________.(17)图形沿某一直线方向移动,叫做________;移动后的新图形与移动前的旧图形_________和_________相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段________且________.三、典型例
6、题,加深理解专题一相交线:【例1】如图,AB⊥CD于点O,直线EF过O点,∠AOE=65°,求∠DOF的度数.解:∵AB⊥CD,∴∠AOC=90°.∵∠AOE=65°,∴∠COE=25°又∵∠COE=∠DOF(对顶角相等)ABCDEFOBACDFEO∴∠DOF=25°.【归纳拓展】两条直线相交包括垂直和斜交两种情形.相交时形成了两对对顶角和四对邻补角.其中垂直是相交的特殊情况,它将一个周角分成了四个直角.BCDA【迁移应用1】如图,AB,CD相交于点O,∠AOC=70°,EF平分∠COB,求∠COE的度数.专题二点到直线的距离:【例2】如图,AD
7、为△ABC的高,能表示点到直线(线段)的距离的线段有()A.2条B.3条C.4条D.5条答案:从图中可以看到共有三条,A到BC的垂线段AD,B到AD的垂线段BD,C到AD的垂线段CD.【归纳拓展】点到直线的距离容易和两点之间的距离相混淆.当图形复杂不容易分析出是哪条线段时,准确掌握概念,抓住垂直这个关键点,认真分析图形是关键.ab【迁移应用2】如图AC⊥BC,CD⊥AB于点D,CD=4.8cm,AC=6cm,BC=8cm,则点C到AB的距离是cm;点A到BC的距离是cm;点B到AC的距离是cm.【拓展延伸】线段AB的长度怎么求?专题三平行线的性质
8、和判定:【例3】(1)如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解:∵∠1=∠2=72°,∴a//b(内错角相等