资源描述:
《《26.3实际问题与二次函数》面积问题课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:(m为定值)2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:(R为定值)3.g表示重力加速度,当物体自由下落时,下落的高度h与下落时间t之间的关系是:(g为定值)新课导入二次函数的抛物线在生产、生活中广泛应用。喷泉与二次函数一公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流
2、形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少m才能使喷出的水流不致落到池外?实际问题根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.解:建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25)当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)
3、2+2.25.数学化xyoA●B(1,2.25)(0,1.25)●C(2.5,0)●D(-2.5,0)跳水与抛物线某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是经过原点O的一条抛物线.在跳某规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是(1)中的抛物线,且运动员在空中调
4、整好入水姿势时,距池边的水平距离为18/5米,问此次跳水会不会失误?并通过计算说明理由.平时我们在跳绳时,绳甩到最高处的形状可以看为抛物线.如图所示,正在甩绳的甲乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳子到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5米,求学生丁的身高?甲乙丙丁跳绳与抛物线最大面积问题在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)如果设矩形的一边AD=xcm,那么AB边的长度如何表示?(
5、2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?ABCD┐MN40cm30cmbcmxcm某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?xxy最多光线问题(1)先分析问题中的数量关系、变量和常量,列出函数关系式.(2)研究自变量的取值范围.(3)研究所得的函数.(4)检验x的取值是否在自变量的取值范围内、结果的合理性等,并求相关的值.(5)解决提出的
6、实际问题.解决关于函数实际问题的一般步骤课堂小结(配方变形,或利用公式求它的最大值或最小值)1.某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?随堂练习x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数。(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.某产品每件成本10元,试销阶段
7、每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下:(2)设每件产品的销售价应定为x元,所获销售利润为w元。则产品的销售价应定为25元,此时每日获得最大销售利润为225元。则解得:k=-1,b=40。(1)设此一次函数解析式为。所以一次函数解析为。