资源描述:
《平面向量的坐标表示与运算习题集课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第25-26课时教学题目:平面向量的坐标表示及其运算习题课教学目标:1、掌握平面向量的坐标表示;2、会进行向量线性运算的坐标表示;3、掌握向量共线的充要条件.教学内容:1、平面向量的坐标表示;2、向量线性运算的坐标表示;3、向量共线的充要条件.教学重点:1、向量线性运算的坐标表示;2、向量共线的充要条件.教学难点:1、向量线性运算的坐标表示;2、向量共线的充要条件.教学方法:讲授法、练习法.教学过程:一、知识点梳理:(一)、平面向量的坐标表示:在平面直角坐标系内,分别取与x轴、y轴正方向相同的两个单位向量、作为基底,对任一向量,由平面向量基本定理知,有且只有一对实数,使得,则实数对
2、叫做向量的直角坐标(简称坐标),记作,其中x和y分别称为向量的x轴上的坐标与y轴上的坐标,而称为向量的坐标表示.注:1、相等的向量其坐标相同.同样,坐标相同的向量是相等的向量.2、显然:,,.(二)、向量线性运算的坐标表示、共线向量的坐标表示——平面向量的坐标运算:1、两个向量和与差的坐标分别等于这两个向量相应坐标的和与差:(其中、).2、一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标:如果、,则.(3)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标:若,则.3、向量平行(向量共线)的坐标表示:已知向量、(),则∥的充要条件为存在实数λ,使.如果,()则∥
3、的充要条件为:.注:1、平面向量的坐标表示,实际是向量的代数表示,引入向量的坐标表示以后,可以使向量运算完全代数化,将数与形紧密地结合起来,这样很多的几何问题的证明,就可以转化为学生熟悉的数量的运算.2、两个向量相加减,是这两个向量的对应坐标相加减,这个结论可以推广到有限个向量相加减.3、向量的坐标与表示该向量的有向线段的起始点的具体位置没有关系,只与其相对位置有关系,即两个向量不论它们的起始点坐标是否相同,只要这两个向量的坐标相同,那么它们就是相等向量.(两个向量如果是相等的,那么它们的坐标也应该是相同的)4、向量的坐标是终点的坐标减去始点的对应坐标,而不是始点的坐标减去终点的坐
4、标.5、实数λ与向量的积的运算时,λ应与的相应坐标相乘,以下的结论都是错误的.设,或二、典型例题讲解例1、若向量与相等,其中A(1,2),B(3,2),则.解:∵则有.又∵=,∴它们的坐标一定相同,∴①,②,由①、②得:.例2、已知,,若,试求与的值.分析:这里可以根据条件建立关于,的方程组,通过解方程组即可求得与的值.解:∵,且∴∴∴①,②,由①、②得:,.说明:这里的题设条件,其实它反应了向量,同向,并且,即||=||,所以,的坐标应成比例,即的横、纵坐标分别与的横纵坐标之比相等且都等于.例3、已知平行四边形三个顶点是(3,-2),(5,2),(-1,4),求第四个顶点的坐标.
5、解:如图,设,,,,依题意,或或.(1)由,可得:即∴,,∴.∴.(2)由可得:,∴,∴,∴.(3)由可得:,∴,,∴,∴.∴点D的坐标为或或.例4、已知,,且∥,求.解:设,则根据题意有:①,②由①、②得:或∴或.例5、已知,,,用,表示.解:设,即∴解得:∴.例6、如果在一直线上,试求的值(规范指导).师生分析:三点共线与两向量平行间的关系是解决本题的关键.解:由已知可知三点共线∴即:于是有:解得:,,所以有:.三、学生练习(一)、选择题1、已知向量,如果那么()A.且与同向B.且与反向C.且与同向D.且与反向2、已知向量,若与平行,则实数的值是()A.-2B.0C.1D.23
6、、若向量=(1,1),=(-1,1),=(4,2),则=()A.3+B.3-C.-+3D.+34、已知,,当与平行,k为何值()A.B.-C.-D.5、已知向量=,=,若//,则锐角等于()A.B.C.D.(二)、填空题:1、设向量,且点的坐标为,则点的坐标为.2、若,则的坐标为_________.3、设平面向量,则_________.4、已知向量,,,若∥,则=.5、若平面向量,满足,平行于轴,,则=.6、已知向量,,则的最大值为.(三)、解答题1、已知,①求;②当为何实数时,与平行,平行时它们是同向还是反向?2、已知A(—2,4)、B(3,—1)、C(—3,—4)且,,求点M、
7、N的坐标及向量的坐标.3、已知点,,,,向量与平行吗?直线平行与直线吗?解:∵,=,又,∴;又,,,∴与不平行,∴、、不共线,与不重合,所以,直线与平行.四、课堂小结1、平面向量的坐标表示;2、向量线性运算的坐标表示;3、向量共线的充要条件.五、作业布置(一)、填空题1、已知,若,则,.2、若A(0,1),B(1,2),C(3,4)则-2=.3、已知两个向量,若,则=.4、在平面直角坐标系中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0),B(6,8)