欢迎来到天天文库
浏览记录
ID:38462081
大小:135.00 KB
页数:5页
时间:2019-06-13
《平均数教学设计.1 平均数(第1课时) 教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、教学设计牟定县民族中学教师唐啟龙第六章数据的分析1.平均数(第一课时)一、学生知识状况分析学生的知识技能基础:学生在小学已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平。学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力。二、教学任务分析本节课的教学任务是:理解算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平
2、均数的实际问题,发展学生的数学应用能力,达成有关的情感态度目标。为此,本节课的教学目标是:1.知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数。2.过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力。3.情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。三、教学过程设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。第
3、一环节:情境引入内容:1.投影展示课本第八章的章前文字、章前图和一组问题,引入本章主题。2.用篮球比赛引入本节课题:篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加。下面播放一段CBA(中国篮球协会)2005—2006赛季“广东宏远队”和“八一双鹿队”的一场比赛片段,请同学们欣赏。在学生观看了篮球比赛的片段后,请同学们思考:(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个
4、球队队员身高的平均数作出判断)在学生的议论交流中引入本节课题:“平均数”。目的:创设接近学生生活的问题情境,让学生在轻松愉快的环境中,思考现实生活中收集数据、处理数据,并用数据的平均数作出判断的必要性。在课题引入中,激发学生学习本章新知识的兴趣,调动其积极性。注意事项:本环节一要“有趣”,二要“紧凑”,达到引入课题,调动学生学习积极性的目的既可,不宜将时间拖得过长。第二环节:合作探究内容1:算术平均数投影教材提供的中国男子篮球职业联赛2011—2012赛季冠亚军球队队员身高、年龄的表格,提出问题:“北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队
5、队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流。(1)学生先独立思考,计算出平均数,然后在小组交流。(2)各小组之间竞争回答,答对的打上星,给予鼓励。答案:北京金隅队队员的平均身高为1.98m,平均年龄为25.4岁;广东东莞银行队队员的平均身高为2.00m,平均年龄为24.1岁。所以,广东东莞银行队队员的身材更为高大,更为年轻。教师小结:日常生活中我们常用平均数来表示一组数据的“平均水平”。一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数,记为。目的:独立思考是合作探究的
6、一个前提,所以学习算术平均数的过程中让先学生独立思考,然后再与同伴交流。小组之间竞争回答问题,让学生经历体验竞争的过程,并以打星的方式给予评价,旨在激发学生的积极性。内容2:加权平均数想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁1922232627282935相应队员数14221221平均年龄﹦(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)﹦25.4(岁)你能说说小明这样做的道理吗?学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和
7、时用了乘法,因此这是一种求算术平均数的简便方法。例1:某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:测试项目网]测试成绩ABC创新728567综合知识507470语言884567(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?引导学生思考讨论:第(1)(2)问中录用的人不一样说明了什么?从而认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因
8、此重要性的差异对结果的影响是很大的。在学生认识的基础上,教师结合例1给出加权平均数的概念:实际
此文档下载收益归作者所有