欢迎来到天天文库
浏览记录
ID:38442352
大小:83.38 KB
页数:18页
时间:2019-06-12
《数学建模城市垃圾运输问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、Word格式货运公司运输问题数信学院14级信计班 魏琮【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。针对问题一,在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我
2、们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.3333小时,费用为4864.0元。针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.3小时,费用为4487.2元。针对问题三的第一小问,知道货车有4吨、6吨和8吨三种型号。经过简单的论证,排除了4吨货车的使用。题目没有规定完美整理Word格式车子不能变向,所以认为车辆可以掉头。然后仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后
3、在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6833小时,费用为4403.2元。一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动
4、一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得完美整理Word格式运费最
5、小。2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度?3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是1.8元/吨公里,空载费用分别为0.2,0.4,0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。图1 唯一的运输路线图和里程数公司材料①②③④⑤⑥⑦⑧A41231025B15012423C52424351完美整理Word格式表1 各公司所需要的货物量二、模型假设1)运输车正常出车。2)假设运输车
6、不会因天气状况,而影响其行驶速度,和装载、卸载时间。3)运输路不会影响运输车行驶速度。4)多辆运输车可以在港口同时装车,不必等待。5)8个公司之间没有优先级别,货运公司只要满足他们的需求量就可以。三、问题分析运输过程的最大特点是三种原料重量不同,分为大小件,当大小件同车,卸货时必须先卸小件,而且不允许卸下来的材料再装上车,要区别对待运输途中是否可以调头的费用。在问题一中,运输途中不能调头,整个送货路线是一个环形闭合回路,如果沿着某一方向同时给多家公司送货时,运输车必须为距离港口近的公司卸下小件,为距离港口远的公司运送大件;而在问题二中,运输途中可以调头,可以首先为远处公司运送小
7、件,在返回途中为距离较近的公司卸下大件。从表面上看,这样运输能够节省车次,降低出车费用。但通过分析,在本题中,载重调头运输并不能降低费用。完美整理Word格式运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。建立模型时,要注意以下几方面的问题:目标层:如果将调度车数、车次以及每车次的载重和卸货点都设为变量,模型中变量过多,不易求解。由于各辆运输车之间相互独立,可以将目标转化为:求解车次总数和每车次的装卸方案,安排尽量少的车辆数,每车次尽量满载,使总
此文档下载收益归作者所有