欢迎来到天天文库
浏览记录
ID:37922968
大小:409.00 KB
页数:20页
时间:2019-06-02
《数学建模垃圾运输问题论文正稿》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word格式文档垃圾运输问题姓名:冯慧班级:服装162学号:201609070203学院:设计与艺术院专业整理word格式文档垃圾运输问题摘要我们就生活中垃圾运输的问题的调度方案予以研究。本文通过对问题的分析和合理的假设,采用规划的理论建立了单目标的非线性规划的数学模型。,运用软件得到了全局最优解,对此类问题的求解提供了一种较优的方案。题中的问题(1)包含着垃圾量和运输费用的累积计算问题,因此,文中以运输车所花费用最少为目标函数,以运输车载重量的大小、当天必须将所有垃圾清理完等为约束条件,以运输车是否从一个垃圾站点到达另一个垃圾站点为决策
2、变量,建立了使得运输费用最小的单目标的非线性规划模型。运用求解,得出了最优的运输路线为10条,此时运输所花费用为2335.77元。通过分析,发现只需6辆运输车(载重量为6吨)即可完成所有任务,且每辆运输车的工作时间均在4个小时左右。具体结果见文中表3。问题(2),建立了以运行路径最短为目标的单目标非线性规划模型。从而求出了使铲车费用最少的3条运行路线,且各条路线的工作时间较均衡。因此,处理站需投入3台铲车才能完成所有装载任务,且求得铲车所花费用为202.0元,三辆铲车的具体运行路线见文中表4。文中,我们假定垃圾处理站的运输工作从晚21:0
3、0开始,根据各铲车的运输路线和所花时间的大小,将铲车和运输车相互配合进行工作的时间做出了详细的安排见表5。问题(3),要求给出当有载重量为4吨、6吨、8吨三种运输车时的最优的调度方案。基于第(1)问中的模型,修改载重量的约束条件,用和专业整理word格式文档分别求解,得出两种调度方案,但总的运输费用不变,均为2326.17元;对于方案一,有9条路径,分别需要4吨的运输车1辆;6吨的运输车2辆;8吨的运输车5辆,各运输车具体的运输线路见文中表8。对于方案二,有10条路径,分别需要4吨的运输车1辆;6吨的运输车1辆;8吨的运输车4辆,各运输车
4、具体的运输线路见文中表10。最后,对模型的优缺点进行了分析,并给出了模型的改进意见,对解决实际问题具有一定的指导意义。关键字:垃圾运输的调度;线性规划;最优解问题的分析这是一个便利问题,此问题的困难之处在于确定铲车的行走路线,并使得运输车工作时尽量不要等待铲车,才能使得运输车的工作时间满足题目的要求——每日平均工作四小时,为此,应该使铲车跟着运输车跑完一条线路,也就是说,应该使铲车铲完一条线路后再接着铲下一条线路。第(1)问,对于运输车调度方案的设计,不能仅仅考虑使运输车的行走路线最短,因为此处还存在着垃圾的累积运输的花费问题,因此,我们
5、的目标函数应该是使得所有运输的花费最少。在建模过程中,我们无需考虑投入的运输车台数,只需对各条路径所花费的时间进行和各运输车载重量约束即可,至于投入的车辆数,在各条路径确定后,计算出各路径运输所花费的时间,再根据题目中要求的每辆车平均工作时间为4小时左右进行计算即可。第(2)问中,对于铲车的调度方案,因其无累积计算问题,因此只需要在已确定的各运输路径的基础上,使得铲车的行驶路径为最短。在此方案中,我们将已确定的各条路径看作为节点,建立使铲车运费最少(亦即路径最短)的非线性规划模型,在此需注意的是,由于垃圾运输为夜间运输,所以每辆铲车的工作
6、时间也受到一定的限制,文中,我们假定铲车的工作时间为从(晚21:00~早6:00),因此每辆铲车的工作时间最多为9个小时,再由所有运输车完成任务所需的总时间判定所需铲车的台数,之后可以根据具体情况进行调整。同时应注意,由于运输车有工作时间的限制,而铲车没有严格的限制(除工作时间不能超过9小时以外),所以,在确定铲车出行的时间时,应保证只可让铲车等待运输车,而不能让运输车等待铲车。对于第(3)问,是在第一问的基础上将对运输车载重的约束条件从不大于6吨改为不大于8吨,在求得各条路线中,对于垃圾量不大于4吨的路线,调用4吨的运输车;对于垃圾量在
7、(4~6吨)之间的路线,调用6吨的运输车;对于垃圾量在(6~8吨)之间的路线,调用8吨的运输车。一模型假设专业整理word格式文档(1)假设各站点每天的垃圾量是不变的;(2)假设各站点的垃圾都必须在当天清理完毕;(3)不考虑运输车和铲车在行驶过程中出现的塞车、抛锚等耽误时间的情况;(4)不允许运输车有超载现象;(5)每个垃圾站点均位于街道旁,保证运输车和铲车行驶顺畅;二模型的建立及求解1符号说明每天运输前第个垃圾站点的垃圾量;第个垃圾站点向第个垃圾站点运输的垃圾量;运输车是否从第个垃圾站点向第个垃圾站点运输的0-1变量;第辆铲车是否从第条
8、路径向第条路径运输的0-1变量;第个垃圾站点和第个垃圾站点之间的距离;第条路径到第条路径的有向距离;垃圾运输车的单位量货物每公里的运输费用;垃圾运输车和铲车每公里的空载费用;铲车通过第条路径所
此文档下载收益归作者所有