小升初2几何篇

小升初2几何篇

ID:38411066

大小:329.50 KB

页数:11页

时间:2019-06-12

小升初2几何篇_第1页
小升初2几何篇_第2页
小升初2几何篇_第3页
小升初2几何篇_第4页
小升初2几何篇_第5页
资源描述:

《小升初2几何篇》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、龙文教育1对1个性化教案学生学校年级六年级教师授课日期授课时段课题小升初专项训练几何篇重点难点考察圆与立体几何;水位问题和三维视图问题教学步骤及教学内容一、回忆与整理二、教学内容1)与圆和扇形有关的题型。参见例1,2,3,4,52)求不规则立体图形的表面积与体积。参见例6,7,83)水位问题。参见例9,104)计数问题。参见例11,125)三维视图的问题。参见例136)其他常考题型。参见例14,15三、教学练习四、教学总结五、布置作业教导处签字:日期:年月日课后一、学生对于本次课的评价11评价○特别满意○满意○一般○差一、教师评

2、定1、学生上次作业评价○好○较好○一般○差2、学生本次上课情况评价○好○较好○一般○差作业布置教师留言教师签字:家长意见家长签字:日期:年月日11数学讲义一、回忆与整理回忆一下以前学过的几何哪些内容。二、教学内容小升初专项训练几何篇典型例题解析1与圆和扇形有关的题型【例1】(★★)如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。求扇形所在的圆面积。【解】:等腰三角形的角为45度,则扇形所在圆的面积为扇形面积的8倍。而扇形面积为等腰三角形面积:S=1/2×10×10=5

3、0。则:圆的面积为400。【例2】(★★★)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?【解】:(此题十分经典)如右上图所示,羊活动的范围可以分为A,B,C三部分,所以羊活动的范围是【例3】(★★)在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。11【解】:我们只要看清楚阴影部分如何构成则不难求解。左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为

4、大扇形减去小扇形,再减去长方形。则为:π/4×4×4-π/4×2×2-4×2=3×3.14-8=1.42。【例4】(★★★)如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。(取π=3)【解】:先看总的面积为1/4的圆,加上一个正方形,加上一个等腰直角三角形,然后扣除一个等腰直角三角形,一个1/4圆,一个45度的扇形。那么最终效果等于一个正方形扣除一个45度的扇形。为1×1-1/8×3×1=5/8【例5】(★★★)如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,【解】:225平方厘米  =225(平方厘

5、米)11与立体几何有关的题型小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下。见下图。在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。2求不规则立体图形的表面积与体积【例6】(★★)用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?【解】:[方法一]:[思路]:整体看待面积问题。解:不管叠多高,上下两面的表面积总是3×3;再看

6、上下左右四个面,都是2×3+1,所以,总计9×2+7×4=18+28=46。[方法二]:[思路]:所有正方体表面积减去粘合的表面积解:从图中我们可以发现,总共有14个正方体,这样我们知道总共的表面积是:6×14=64,但总共粘合了18个面,这样就减少了18×1=18,所以剩下的表面积是64-18=46。[方法三]:直接数数。[思路]:通过图形,我们可以直接数出总共有46个面,每个面面积为1,这样总共的表面积就是46。11【例7】(★★★)在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方

7、形,洞深1厘米(如下图).求挖洞后木块的表面积和体积.【解】:提示:大正方体的边长为4厘米,挖去的小正方体边长为1厘米,说明大正方体木块没被挖通,因此,每挖去一个小正方体木块,大正方体的表面积增加“小洞内”的4个侧面积。6个小洞内新增加面积的总和:1×1×4×6=24(平方厘米),原正方体表面积:42×6=96(平方厘米),挖洞后木块表面积:96+24=120(平方厘米),体积:43-13×6=58(立方厘米).答:挖洞后的表面积是120平方厘米,体积是58立方厘米.【例8】(★★★)如图是一个边长为2厘米的正方体。在正方体的上

8、面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为1/2厘米的小洞;第三个小洞的挖法与前两个相同,边长为1/4厘米。那么最后得到的立体图形的表面积是多少平方厘米?【解】:[方法一]:[思路]:立体图形的好处就是可以直观视觉,虽然图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。