基二算法设计FFT函数

基二算法设计FFT函数

ID:38367282

大小:62.00 KB

页数:3页

时间:2019-06-11

基二算法设计FFT函数_第1页
基二算法设计FFT函数_第2页
基二算法设计FFT函数_第3页
资源描述:

《基二算法设计FFT函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实验四FFT一实验目的掌握FFT基2时间抽选法,理解其提高减少乘法运算次数提高运算速度的原理。二实验原理FFT算法将长序列的DFT分解为短序列的DFT。N点的DFT先分解为2个N/2点的DFT,每个N/2点的DFT又分解为N/4点的DFT,等等。最小变换的点数即所谓的“基数”。因此,基数为2的FFT算法的最小变换(或称蝶型)是2点的DFT。一般地,对N点FFT,对应于N个输入样值,有N个频域样值与之对应。以基2时间按抽选法为例,分解递推公式为:X1(K)和X2(K)分别对应时间序列x(n)的的偶、奇序列N/2点长的DFT,以此方法分解下去,得到两点长N/2为组的离散时间

2、分组结果。在一次由两点DFT复合产生4、8、16……到N点的最后结果。运算量由N*N次降为次乘法。三实验内容1.编写一函数实现按时间抽取的FFT算法。2.对N=16以及N=2048的离散时间信号RN(n),分别用自己编写的FFT函数及DFT函数来计算其DFT结果,比较所用时间。四,实验程序及结果;(1)基二算法:functionX=jes_fft(xn)N=length(xn);W=exp(-j*2*pi/N);X=zeros(1,N);ifN>2forr=1:N/2a(r)=xn(2*r-1);b(r)=xn(2*r);endA=jes_fft(a);B=jes_ff

3、t(b);fork=1:N/2X(k)=A(k)+B(k)*W^(k-1);X(k+N/2)=A(k)-B(k)*W^(k-1);endelseA=xn(1)+xn(2);B=xn(1)-xn(2);X=[A,B];endk=0:N-1;stem(k,X,'filled')title('基二算法图像')ylabel('fft')xlabel('n')运行如下:A>>jes_fft([11111111])ans=80000000B>>jes_fft(ones(1,2048));(2)fft函数调用:functionX=tft(xn)N=length(xn);X=fft(x

4、n,N);k=0:N-1;title('基二算法图像')ylabel('fft')xlabel('n')stem(k,X,'filled')运行如下:tft([1111111111111111]);tft(ones(1,2048));五,结果分析:通过两个函数的运行比较,可知:运用基二算法所用时间比调用FFT函数所用时间长得多,说明不同算法所用时间不同。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。