离散数学代数结构

离散数学代数结构

ID:38355835

大小:208.50 KB

页数:30页

时间:2019-06-11

离散数学代数结构_第1页
离散数学代数结构_第2页
离散数学代数结构_第3页
离散数学代数结构_第4页
离散数学代数结构_第5页
资源描述:

《离散数学代数结构》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、代数结构1代数结构部分第5章代数系统的一般性质第6章几个典型的代数系统2第5章代数系统的一般性质5.1二元运算及其性质5.2代数系统及其子代数和积代数5.3代数系统的同态与同构35.1二元运算及其性质二元运算定义及其实例一元运算定义及其实例运算的表示二元运算的性质交换律、结合律、幂等律、消去律分配律、吸收律二元运算的特异元素单位元零元可逆元素及其逆元4二元运算的定义及其实例定义设S为集合,函数f:S×S→S称为S上的二元运算,简称为二元运算.也称S对f封闭.(1)保证参加运算的可以是S中任意两个元素;(2)运算的

2、结果也是S中的一个元素例1(1)N上的二元运算:加法、乘法.f:N×N→N,f()=x+y(2)Z上的二元运算:加法、减法、乘法.(3)非零实数集R*上的二元运算:乘法、除法.(4)设S={a1,a2,…,an},ai∘aj=ai,∘为S上二元运算.5二元运算的实例(续)(5)设Mn(R)表示所有n阶(n≥2)实矩阵的集合,即矩阵加法和乘法都是Mn(R)上的二元运算.(6)幂集P(S)上的二元运算:∪,∩,-,.(7)SS为S上的所有函数的集合:合成运算∘.6一元运算的定义与实例定义设S为

3、集合,函数f:S→S称为S上的一元运算,简称为一元运算.例2(1)Z,Q和R上的一元运算:求相反数(2)非零有理数集Q*,非零实数集R*上的一元运算:求倒数(3)复数集合C上的一元运算:求共轭复数(4)幂集P(S)上,全集为S:求绝对补运算~(5)A为S上所有双射函数的集合,ASS:求反函数(6)在Mn(R)(n≥2)上,求转置矩阵7二元与一元运算的表示算符:∘,∗,·,,等符号表示二元或一元运算对二元运算∘,如果x与y运算得到z,记做x∘y=z;对一元运算∘,x的运算结果记作∘x表示二元或一元运算的方法:

4、公式、运算表注意:在同一问题中不同的运算使用不同的算符8公式表示例3设R为实数集合,如下定义R上的二元运算∗:x,y∈R,x∗y=x.那么3∗4=30.5∗(-3)=0.5运算表(表示有穷集上的一元和二元运算)二元与一元运算的表示(续)9运算表的形式∘a1a2…an∘aia1a2...ana1∘a1a1∘a2…a1∘ana2∘a1a2∘a2…a2∘an.........an∘a1an∘a2…an∘ana1a2...an∘a1∘a2...∘an10运算表的实例例4A=P({a,b}),,∼分别为对称差和绝对补运

5、算({a,b}为全集)的运算表∼的运算表{a}{b}{a,b}X∼X{a}{b}{a,b}{a}{b}{a,b}{a}{a,b}{b}{b}{a,b}{a}{a,b}{b}{a}{a}{b}{a,b}{a,b}{a}{b}11运算表的实例(续)例5Z5={0,1,2,3,4},,分别为模5加法与乘法的运算表的运算表012340123401234012341234023401340124012301234000000123402413031420432112二元运算的性质定义设∘为S

6、上的二元运算,(1)如果对于任意的x,yS有x∘y=y∘x,则称运算在S上满足交换律.(2)如果对于任意的x,y,z∈S有(x∘y)∘z=x∘(y∘z),则称运算在S上满足结合律.(3)如果对于任意的x∈S有x∘x=x,则称运算在S上满足幂等律.S中的全体元素都是幂等元13实例分析Z,Q,R分别为整数、有理数、实数集;Mn(R)为n阶实矩阵集合,n2;P(B)为幂集;AA为A上A,

7、A

8、2.集合运算交换律结合律幂等律Z,Q,R普通加法+有有无普通乘法有有无Mn(R)矩阵加法+有有无矩阵乘法无有无P(B)

9、并有有有交有有有相对补无无无对称差有有无AA函数复合无有无14二元运算的性质(续)定义设∘和∗为S上两个不同的二元运算,(1)如果x,y,z∈S有(x∗y)∘z=(x∘z)∗(y∘z)z∘(x∗y)=(z∘x)∗(z∘y)则称∘运算对∗运算满足分配律.(2)如果∘和∗都可交换,并且x,y∈S有x∘(x∗y)=xx∗(x∘y)=x则称∘和∗运算满足吸收律.15实例分析集合运算分配律吸收律Z,Q,R普通加法+与乘法对+可分配无+对不分配Mn(R)矩阵加法+与乘法对+可分配无+对不分配P(B)

10、并与交对可分配有对可分配交与对称差对可分配无对不分配Z,Q,R分别为整数、有理数、实数集;Mn(R)为n阶实矩阵集合,n2;P(B)为幂集;AA为A上A,

11、A

12、2.16二元运算的特异元素单位元定义设∘为S上的二元运算,如果存在el(或er)S,使得对任意x∈S都有el∘x=x(或x∘er=x),则称el(或er)是S中关于∘运算的左(或右)幺

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。