高二数学三角恒等变换

高二数学三角恒等变换

ID:38316301

大小:513.50 KB

页数:61页

时间:2019-06-09

高二数学三角恒等变换_第1页
高二数学三角恒等变换_第2页
高二数学三角恒等变换_第3页
高二数学三角恒等变换_第4页
高二数学三角恒等变换_第5页
资源描述:

《高二数学三角恒等变换》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、●课程目标1.知识与技能目标(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量法的作用.(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.(3)能运用上述公式进行简单的恒等变换,尝试推导半角公式,积化和差、和差化积公式(公式不要求记忆),能解决比较简单的应用问题.2.过程与方法目标(1)引导学生推导和角公式,使学生认识整个公式体系的推理和形成的过程,从这一过程中,使学生领会其中所体现出来的数学思想、方法,发展创新意识,提高数学素质.(2)通过运用公式进行

2、简单的恒等变换.使同学们进一步提高运用联系的观点、转化与化归的思想方法去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的作用.在学习三角恒等变换的基本思想与方法的过程中,发展推理能力和运算能力.3.情感、态度与价值观目标通过公式的推导,了解它们的内在联系和知识的发展过程,体会一般与特殊的关系与转化,体会三角恒等变换的工具性作用及它们在数学和实际中的一些应用、激发学习兴趣,培养利用联系、变化的辩证唯物主义观点去分析、解决问题的能力.●学法探究1.三角恒等变换以代数变换与同角三角函数式的变换为基础

3、,和其它数学变换一样,它包括变换的对象,变换的目标,以及变换的依据和方法等要素.本章变换的对象要由只含一个角的三角函数式拓展为包含两个角的三角函数式,因此建立起一套包含两个角的三角函数式变换的公式就是本章的首要任务.2.由于和、差、倍之间存在的关系,和角、差角、倍角的三角函数之间必然存在紧密的内在联系,因此我们可以不必孤立地去一一推导这些公式,而只要推导出一个公式作为基础,再利用这种联系性,用逻辑推理的方法就可以得到其它公式.选择哪个公式作为基础呢?过去的教材曾经进行过许多探索,其基本出发点都是努力使公式的证明过程尽量简明易懂,易于被

4、同学们所接受.这里由于向量工具已被引入,因此选择了两角差的余弦公式作为基础.应当说,这样处理使得公式的得出成为一个纯粹的代数运算过程,大大降低了思维难度.另外,对于众多公式的推导顺序,也可以有多种不同安排.本章中先探索出了两角差的余弦公式,然后以它为基础,推导出其它公式,具体过程如下:Cα-β→Cα+β→Sα±β→Tα±β——S2αC2α,T2α→和差化积,积化和差.应特别注意,这一系列公式的推导过程,可以有不同的变换推导思路,其基础都是Cα-β,公式推导过程本身蕴涵了本章最重要的一些变换的思想方法.要注重探索,深刻领悟其思想方法的精

5、髓,并运用于解决问题的过程中.3.本章内容安排的一条明线是建立公式,学习变换,还有一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅体现在学习变换的过程之中,也体现在建立公式的过程之中.因此在本章全部内容的安排中,特别注意恰时恰点地提出问题,引导同学们用对比、联系、化归的观点去分析、处理问题,使同学们能依据三角函数式的特点,逐渐明确三角恒等变换不仅包括式子的结构形式变换,还包括式子中的角的变换,以及不同三角函数之间的变换,引导同学们逐渐拓广有关公式在变换过程中的作用,强化运用数学思想方法指导设计变换思路的意识,并且也注意了这种

6、引导的渐进性和层次性.4.在掌握公式上建议注意以下方面:(1)在理解公式,理顺公式关系的前提下,通过训练熟记公式,即在应用过程中记忆.(2)注意公式的灵活运用,即会正用、逆用、变形用,也要会根据题目的情景,通过分析角的关系、名的关系和式子的结构特点选择应用公式.(3)注意角范围的讨论,特别是求角时,取函数名要尽量取在该范围内单调的函数.●教学点津1.本章重要任务是引导学生用向量的数量积导出两角差的余弦公式,进而通过角的变换导出和、差、倍、半及和积互化公式,了解公式的内在联系,并能运用这些公式,进行简单的三角函数的化简、求值、证明等(其

7、中和积互化公式、半角公式不要求记忆).2.教师要指导学生在学习过程中,体会、归纳三角函数的化简、计算、证明等恒等变形的基本思路,使学生形成通过“变角、变名、变结构”来解决三角恒等变形问题的技能技巧.三角函数概念多、公式多,好多学生接过一个题目会感到无从着手,其原因一是公式不熟,二是不知从“角的构成特点”,“名称的关系”,“式子的结构特征”入手分析,教学中应针对学生学习思维的误区有针对性的进行指导.进行典例分析,体会解决三角恒等变换问题的一般思路、步骤,训练转化与化归的思想方法.3.讨论角的范围及依据具体问题中角的范围确定使用哪种函数来

8、计算等是学习的难点,要分散突破,集中巩固.4.通过练习题的训练达到巩固知识,掌握方法技巧,提升思维能力的目的是基本的做法.选择恰当的训练题能起到节省学习时间,缩短学习过程,有利知识巩固的效果.一是本章练习题应以体现公式的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。