高三数学不等式小结

高三数学不等式小结

ID:38310756

大小:214.50 KB

页数:21页

时间:2019-06-09

高三数学不等式小结_第1页
高三数学不等式小结_第2页
高三数学不等式小结_第3页
高三数学不等式小结_第4页
高三数学不等式小结_第5页
资源描述:

《高三数学不等式小结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、主讲老师:不等式小结(二)知识梳理(一)线性规划二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线).1.用二元一次不等式(组)表示平面区域知识梳理2.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点).知

2、识梳理①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.3.线性规划的有关概念:知识梳理①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.3.线性规划的有关概念:②线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.知识梳理3.线性规划的有关概念:③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.知识梳理④可行

3、解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.3.线性规划的有关概念:③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.知识梳理(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.4.求线性目标函数在线性约束条件下的最优解的步骤:知识梳理(二)基本不等式知识梳理(二)基本不等式典型例题例1.画出不等式组1.二元一次方程(组)与平面区域表示的平面

4、区域.典型例题例2.已知x、y满足不等式组2.求线性目标函数在线性约束条件下的最优解求z=3x+y的最小值.典型例题思维拓展已知x、y满足不等式组试求z=300x+900y的最大值时的整点的坐标,及相应的z的最大值.典型例题3.利用基本不等式证明不等式例3.求证典型例题4.利用基本不等式求最值例4.求的最小值.典型例题4.利用基本不等式求最值例5.四边形ABCD的两条对角线相交于O,如果△AOB的面积为4,△COD的面积为16,求四边形ABCD的面积S的最小值,并指出S最小时四边形ABCD的形状.典型例题4.利用基本不等式求最值例6.某食品厂定期购买面粉,已知该厂

5、每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?课堂小结1.解线性规划应用题的一般步骤:①设出未知数;②列出约束条件;③建立目标函数;④求最优解.课堂小结2.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.1.解线性规划应用题的一般步骤:①设出未知数;②列出约束条件;③建立目标函数;④求最优解.课堂小结2.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数

6、及不等式性质等)解决问题.1.解线性规划应用题的一般步骤:①设出未知数;②列出约束条件;③建立目标函数;④求最优解.3.求最值常用的不等式:注意点:一正、二定、三相等,和定积最大,积定和最小.《习案》作业三十五.课后作业湖南省长沙市一中卫星远程学校

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。