《3.1回归分析的基本思想及其初步应用(二)》课件

《3.1回归分析的基本思想及其初步应用(二)》课件

ID:38305705

大小:1.61 MB

页数:21页

时间:2019-06-08

《3.1回归分析的基本思想及其初步应用(二)》课件_第1页
《3.1回归分析的基本思想及其初步应用(二)》课件_第2页
《3.1回归分析的基本思想及其初步应用(二)》课件_第3页
《3.1回归分析的基本思想及其初步应用(二)》课件_第4页
《3.1回归分析的基本思想及其初步应用(二)》课件_第5页
资源描述:

《《3.1回归分析的基本思想及其初步应用(二)》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1回归分析的基本思想及其初步应用(二)例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示.编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量

2、.2.回归方程:1.散点图;本例中,r=0.798>0.75.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.316kg.即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的值.例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示.编号12345678身高/cm165165157170175

3、165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系.我们可以用下面的线性回归模型来表示:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差.y=bx+a+e,E(e

4、)=0,D(e)=(4)在线性回归模型(4)中,随机误差e的方差越小,通过回归直线(5)预报真实值y的精度越高.随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中和为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因.思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观

5、测误差.以上三项误差越小,说明我们的回归模型的拟合效果越好.5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上.但是,在图中,数据点并没有完全落在回归直线上.这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了.在例1中,残差平方和约为128.361.因此,数据点和它在回归直线上相应位

6、置的差异是随机误差的效应,称为残差.例如,编号为6的女大学生,计算随机误差的效应(残差)为:对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号称为残差平方和,它代表了随机误差的效应.表示为:表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据.残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.编号12345678身高/cm165165157170175165

7、155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.2021/9/30郑平正制作残差图的制作及作用.坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意.身高与体重残差图异常点错误数据模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否

8、有人为的错误.如果数据采

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。