工业机器人运动学-1数学基础

工业机器人运动学-1数学基础

ID:38304977

大小:280.55 KB

页数:37页

时间:2019-06-08

工业机器人运动学-1数学基础_第1页
工业机器人运动学-1数学基础_第2页
工业机器人运动学-1数学基础_第3页
工业机器人运动学-1数学基础_第4页
工业机器人运动学-1数学基础_第5页
资源描述:

《工业机器人运动学-1数学基础》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章工业机器人运动学引言要实现对工业机器人在空间运动轨迹的控制,完成预定的作业任务,就必须知道机器人在空间瞬时的位置与姿态。如何计算机器人手部在空间的位姿是实现对机器人的控制首先要解决的问题。本章讨论机器人运动学的基本问题,将引入齐次坐标变换。推导出坐标变换方程;利用DH参数法,进行机器人的位姿分析;介绍机器人正向和逆运动学的基础知识。主要内容数学基础——齐次坐标变换机器人运动学方程的建立(正运动学)机器人逆运动学分析一、机器人数学基础——齐次坐标变换1.1引言1.2点向量和平面的描述1.3变换1.4平移变换1.5旋转变换1.6坐标系1.7相对变换1.8物体的描述1.9

2、逆变换1.10一般性旋转变换1.11等价旋转角与旋转轴1.12扩展与缩小1.13透视变换1.14变换方程1.15小结1.1引言(Introduction)机器人操作涉及到各物体之间的关系和各物体与机械手之间的关系。这一章将给出描述这些关系必须的表达方法。类似这种表示方法在计算机图形学中已经解决。在计算机图形学和计算机视觉中,物体之间的关系是用齐次坐标变换来描述的。在本课程我们将采用齐次坐标变换来描述机械手各关节坐标之间、各物体之间以及各物体与机械手之间的关系。本章首先介绍向量和平面的表示方法,然后引出向量和平面的坐标变换,这些变换基本上是由平移和旋转组成,因此可以用坐标系

3、来描述各种物体和机械手的空间位置和姿态。稍后还要介绍逆变换,逆变换是运动学求解的基础。a0vzyxzyxpcb0uEH图1.1点向量的描述•1.2点向量和平面的描述(Notationofpointvectorsandplanes)1.2.1点向量(Pointvectors)点向量描述空间的一个点在某个坐标系的空间位置。同一个点在不同坐标系的描述及位置向量的值也不同。如图1.1中,点p在E坐标系上表示为Ev,在H坐标系上表示为Hu,且v≠u。一个点向量可表示为v=ai+bj+ck通常用一个(n+1)维列矩阵表示,即除x、y、z三个方向上的分量外,再加一个比例因子w,即v=[

4、xyzw]T其中a=x/w,b=y/w,c=z/w。改变比例因子w,则分量a、b、c的数值相应改变,但描述的还是同一个点向量。如v=3i+4j+5k可表示为v=[3451]T=[68102]T=[-3-4-5-1]T在向量中增加一个比例因子w是为了方便坐标变换中的矩阵运算。已知两个向量a=axi+ayj+azkb=bxi+byj+bzk(1.1)向量的点积是标量。用“·”来定义向量点积,即a·b=axbx+ayby+azbz(1.2)向量的叉积是一个垂直于由叉积的两个向量构成的平面的向量。用“×”表示叉积,即a×b=(aybz¯azby)i+(azbx¯axbz)j+(a

5、xby¯ayby)k(1.3)可用行列式表示为ijka×b=axayaz(1.4)bxbybz1.2.2平面(Planes)平面可用一个行矩阵表示,即p=[abcd](1.5)它表示了平面p的法线方向,且距坐标原点的距离为-d/m,其中m=(1.6)如图1.2所示,如果将x-y平面沿z轴正方向平移一个单位距离,构成平面p,则p=[001-1]即a=0,b=0,c=1,d=-1,m==1平面p上任一点v为v=[xy11]T,它与平面p的点乘为零,即p•v=0平面p上方任一点v,如v=[0021]T,它与平面p的点乘为一个正数,即p•v=1平面p下方任一点v,如v=[0001

6、]T,它与平面p的点乘为一个负数,即p•v=-1注意:平面[0000]无定义。a2+b2+c2a2+b2+c2图1.2平面的描述0•vpzyx1yxH空间的变换是由4×4矩阵来完成的,它可以表示平移、旋转、扩展和透视等各种变换。如已知点u(在平面p上),它的变换v(在平面q上)用矩阵积表示为v=Hu(1.7)其中H为4×4变换矩阵,u和v为4×1的点列向量,相应的平面p到q的变换是q=pH-1(1.8)其中H-1为H的逆阵,p和q为1×4的平面行向量。经变换后的平面向量q与点向量v的点乘为q·v=pH-1·Hu=p·u(1.9)与变换前平面p与点u的点乘相等,证明了变换的

7、等效性。1.3变换(Transformation)1.4平移变换(Translationtransformation)用向量h=ai+bj+ck进行平移,其相应的H变换矩阵是100a010bH=Trans(abc)=001c(1.10)0001因此对向量u=[xyzw]T,经H变换为向量v可表示为x+awx/w+ay+bwy/w+bv=z+cw=z/w+c(1.11)w1可见,平移实际上是对已知向量u=[xyzw]T与平移向量h=[abc1]T相加。【例1.1】对点向量u=[2321]T进行平移,平移向量为h=[4-371]T

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。