基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法

基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法

ID:38277336

大小:677.89 KB

页数:5页

时间:2019-05-25

基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法_第1页
基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法_第2页
基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法_第3页
基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法_第4页
基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法_第5页
资源描述:

《基于声发射信号的+小波分析+支撑向量机的刀具磨损检测方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Proceedingsofthe8thWorldCongressonIntelligentControlandAutomationJuly6-92010,Jinan,ChinaCuttingToolWearIdentificationbasedonWaveletPackageandSVMXuTaoandWangTaoDepartmentofAutomationShenyangInstituteofAeronauticalEngineeringShenyang,110136,P.R.Chinawyhxt200

2、0@163.comAbstract-Bycontrastwithconventionalmethods,Acousticachievegoodperformance.So,waveletpackagewasstudiedEmission(AE)sensorpossessesbetterperformancefortooltoextractfeatureofcuttingtool[7-9].AndBPneuralwearidentifying.So,AEsensorisemployedintocuttingt

3、oolnetworkwasdesignedtoidentifycuttingtool’sfailure[9].wearidentificationinthispaper.BecauseofthediversityandBecauseSVMpossessesbetterclassificationperformancetimevaryingofAE,waveletpackagedecompositionandforsmallsample,SVMisemployedtoidentifycuttingtoolSu

4、pportVectorMachine(SVM)areemployedtoprocessAEwearafterfeatureextractionbywaveletpackage,whichsignal.Waveletpackageissuitableforanalyzingnon-stationaryextractsfeaturefromreconstructiondataofeachnodeaftersignal,andSVMpossessesexcellentclassificationcapacityf

5、orsmallsample.Accordingtothesefeatures,signalprocessingdecomposition.methodforidentifyingfaultofcuttingtoolwearbasedonThispaperwillbestructuredasfollows;InSectionIIwaveletpackageandSVMwaspresented.Thecharacteristicswewillintroducethetheoremofwaveletpackage

6、approach;ofthecuttingtoolwearunderdifferentconditionswereInSectionIIIwewillintroducethetheoremofSVMextractedbywaveletpackage,andcuttingtoolwearwasapproach;InSection4wewilldescribeourapproach,identifiedbySVMclassifier.Experimentresultsshowthattheexplaininge

7、achstep;Insection5wewillshowhowmethodbasedonwaveletpackageandSVMissuitableforapplyingthismethodforcuttingtoolwearidentificationinidentifyingcuttingtoolwear,andtherateofsuccessfullyidentifyingis93.3%.theexperiment.Finally,wewillpresentmeaningconclusion.Inde

8、xTerms–CuttingToolWear;AESsensor;WaveletPackage;SupportVectorMachineII.WAVELETPACKAGETHEOREMShort-TimeFourierTransform(STFT)possessesI.INTRODUCTIONlinearitycharacteristicwhendecomposingthefrequencyWiththeincr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。