欢迎来到天天文库
浏览记录
ID:38255756
大小:53.50 KB
页数:7页
时间:2019-06-06
《卫星重力测量》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、卫星重力测量-基础、模型化方法与数据处理算法 作者简介:张传定,男,1966年04月出生,1996年09月师从于解放军信息工程大学陆仲连教授,于2000年12月获博士学位。 摘要论文的中心内容是卫星重力测量中如何由星载传感器获得的观测数据恢复地球重力场这一过程的模型化问题。旨在吸取前人的研究成果,提出更加合理的数据处理模型。论文最突出的贡献是,改造并完善了大地重力学、空间大地测量、卫星轨道力学等学科模型化的理论与方法以适应卫星重力测量这一新型观测技术。作者的主要工作和创新点有:1.在综合卫星重力测量有关最新研究成果
2、的基础上,系统地论述了动态加速度测量、卫星重力梯度测量的基本原理;论证了它们的测量精度与姿态角加速度的关系以及卫星重力测量系统最终恢复地球重力场能力的判定准则;深入理解并掌握了现行SST、SGG卫星CHAMP、GRACE、GOCE各项指标及恢复地球重力场各频段的精度指标。2.简要介绍了卫星重力测量中所涉及到的曲线坐标系下矢量、张量与曲线坐标之间的微分关系、坐标系之间的变换关系以及它们的矩阵表示。详细研究了在地球重力场确定中常用的关于研究点P和流动点Q相互关联的球极坐标系,给出了球极坐标系下地球引力位V关于P点和关于Q
3、点的微分公式以及它们与球坐标系下局部微分算子的关系。深入研究了关于P和Q两点局部导数算子的相互作用问题,得到了扰动场元之间核函数和协方差函数的解析与级数展开式,首次给出了较为实用的明晰表达式。此结果是对物理大地测量学关于这一论题的补充和完善。这项工作是本文的一个创新点。3.详细推导了地球、卫星、加速度传感器检验荷载这一特殊限定性三体问题的运动方程;指出星载加速度传感器的输出就是卫星所受非引力加速度和检验荷载相对于卫星中心地球引力的潮汐力之差;进而得到了由星载加速度传感器的比力测量和GPS跟踪测量数据直接恢复地球引力矢
4、量的理论公式。4.通过对扭秤、旋转梯度仪工作原理的考察和Molodensky关于垂线偏差推求高程异常的论述以及目前业已发现水平梯度分量的某种组合是球面正交函数系的事实,作者明确指出,在地球重力场的研究中,水平方向观测量的组合应作为复数使用。扰动场元观测量的复数表达是本文立论和各种模型化(建模)工作的思想基础,也是本文最为突出的创新点。5.在§2.7中,直接由体球谐函数水平梯度的复表示定义并证明了描述地球引力位直到二阶水平梯度所需的球面正交函数系。它们关于纬度的函数是Legender函数及其导数的拟线性组合,可由目前熟
5、知有关Legender函数及其导数的递推公式给予赋值。连同球谐函数构成了描述引力矢量、引力梯度张量所需的正交函数系。因而,利用它们可将引力矢量、引力梯度张量的复分量表达成一致的形式。6.利用卫星重力测量数据恢复地球重力场,若从边值问题理论上可将其归结为平均轨道面上卫星重力测量超定边值问题。通常又将利用单个边值条件确定扰动位问题称为单定问题。在§3中,先以重力异常为例,类比依次给出直到二阶梯度球域单定连续边值问题恢复地球引力位系数的理论公式及其外部解析解和向下延拓截断核函数解;接着导出离散网格平均重力异常对应的简单调和
6、分析公式和最小二乘调和分析公式;然后推广得到广义梯度调和分析公式和超定边值问题的最小方差解、最小二乘解。并证明了最小方差解等价于单定边值问题调和分析解的频域加权平均;最小二乘解等价于单定离散边值问题最小二乘调和分析解法方程相加所得的解。广义调和分析方法所需的有关勒让德函数及其导数的积分递推公式在§3.6中给出。7.首次定义并推导出了水平一阶和二阶梯度平滑因子、。在概念上澄清了它们与熟知的面球谐函数平滑因子是不同的。尽管、与相差不大,但在实践上应严格区分它们,这样逻辑上才是严格的。与观测量的对应关系是使用时应按格网均值
7、数据类型,采用相应的平滑因子。8.由于水平扰动场元之间的协方差并非各向同性,导致协方差矩阵结构复杂(子矩阵不是Toeplitz循环阵),不能利用变换矩阵将其降阶,无法付诸实践,迄今尚无最小二乘配置理论应用于水平扰动场元观测量的模型化公式和数据处理方法。作者研究发现,利用水平梯度的复组合,即复数表示后,扰动重力场元复组合之间的协方差函数尽管还是各向异性,但它们对应的协方差矩阵却具有分块Toeplitz循环阵的结构,因而水平分量复组合的配置问题与重力异常的配置问题相似,可以利用傅立叶变换矩阵进行降阶处理。这表明,必须将最
8、小二乘配置理论拓展,以适应复数信号的配置问题,本文将其称为最小二乘复配置。作者将最小二乘配置理论拓展为既能处理复信号又能处理实信号的配置模型,得到了最小二乘复配置解所需的公式。结合卫星重力测量观测量,详细研究了重力场元复分量之间协方差函数的级数展开式、扰动引力位系数与复分量间的协方差关系。然后,利用最小二乘复配置理论和重力场复分量之间协方差函数
此文档下载收益归作者所有