Constructing Operator Valued Probability Measures in Phase Space

Constructing Operator Valued Probability Measures in Phase Space

ID:38226844

大小:124.02 KB

页数:6页

时间:2019-06-01

Constructing Operator Valued Probability Measures in Phase Space_第1页
Constructing Operator Valued Probability Measures in Phase Space_第2页
Constructing Operator Valued Probability Measures in Phase Space_第3页
Constructing Operator Valued Probability Measures in Phase Space_第4页
Constructing Operator Valued Probability Measures in Phase Space_第5页
资源描述:

《Constructing Operator Valued Probability Measures in Phase Space》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ConstructingOperatorValuedProbabilityMeasuresinPhaseSpaceDemosthenesEllinas∗DepartmentofSciences,DivisionofMathematics,TechnicalUniversityofCrete,GR73100ChaniaCreteGreeceFebruary1,2008AbstractProbabilitymeasures(quasiprobabilitymass),givenintheformofin-tegralsofWignerfunctionoverareaso

2、ftheunderlyingphasespace,giverisetooperatorvaluedprobabilitymeasures(OVM).GeneralconstructionmethodsofOVMs,areinvestigatedintermsofgeometricpositivetraceincreasingmaps(PTI),forgeneral1Ddomains,aswellas2Dshapese.g.circles,disks.SpectralpropertiesofOVMsandoperationalimplementa-tionsofthe

3、irconstructingPITsarediscussed.Keywords:Quantumprobability,POVM,Wignerfunction,PhasespaceQuantumMechanicsPACS:02.,02.50.-r,03.65.Ta,03.67.-aAnOVMisamapK:F→L(H),fromaσ−algebraFofsubsetsofannonemptysetΩ,totheboundedoperatorsL(H)onaHilbertspaceH,suchthatforΨ∈H,andX∈F,thefunctionµΨ(X)≡hΨ

4、K

5、(X)Ψi,isanormalized(i.e.µΨ(Ω)=1),generalized(i.e.negativevalued)measure(i.e.σ−additivesetfunction).IfF(X)≥0,i.e.µΨ(X)>0,∀X∈FwehaveapositiveOVM,furtherifK(X)†=K(X),andK(X)2=K(X),wehaveaprojectivearXiv:quant-ph/0611278v128Nov2006OVM,namelyanobservable(seee.g.[1]).ForthecaseofWignerfuncti

6、on[2][3]W(α)=hΨ

7、D(α)ΠD(α)†

8、Ψi,wehaveΩ≡C,H≡span(

9、ni,n=0,1,...)the

10、ψ>Fockspace,withNthenumberoperator,Π=eiπNtheparityoperator,and†∗D(α)=eαa−αa=e(iqP−ipQ)thedisplacementoperator.IntegralsofWignerRfunction[4][5]W(α)d2α=Tr(

11、ΨihΨ

12、K(X)),physicallydefinethequasiX

13、ψ>RprobabilitymassoverX,interms

14、ofOVMK(X)≡D(α)ΠD(α)†d2α.XProposition1LetXqaregioninq-axisdeterminedbythecharacteristicfunction(cfun),χ(q),q∈R,withFouriertransform(FT)χe(p),thentheasso-ciatedOVMisKq=χe(P)Π.ThesolutionofeigenproblemKq

15、Ψ±i=λ±

16、Ψ±i,determinestheeigenvaluesλ±(p)=±χe(p),andtheeigenvectors

17、Ψ±i=

18、pi±

19、−∗ellinas

20、@science.tuc.gr1a0P∞mπqpi.Iffurtherχ(q)isL−periodicwithFourierseriesχ(q)=2+m=1amcos(L)+mπqbmsin(L),theOVMbecomes"πaX∞mπmπ0iφmKq=Π

21、p=0ihp=0

22、+πrme

23、p=ihp=

24、2LLm=1i−iφmmπmπ+e

25、p=−ihp=−

26、,(1)LLwhererm≡

27、am+ibm

28、,andφm≡arg(am+ibm).Proof:Theregionoperator(convention:alternativenameforOVMrelate

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。