资源描述:
《储层岩石的应力敏感性评价方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、·40·第25卷第1期大庆石油地质与开发P1G1O1D1D12006年2月文章编号:100023754(2006)0120040203储层岩石的应力敏感性评价方法李传亮(西南石油学院油气藏地质及开发工程国家重点实验室,四川成都610500)摘要:油气藏岩石同时受外应力(外压)和内应力(内压,孔隙压力)的共同作用。油气藏岩石对外应力的敏感程度,用外应力敏感指数进行评价;对内应力的敏感程度用内应力敏感指数进行评价。油气藏的外应力敏感指数远大于内应力敏感指数。由于油气藏生产过程中外应力不发生变化,内应力随开采过程而不断变化,因此,油气藏岩
2、石的应力敏感程度应采用内应力敏感指数。岩石的外应力敏感指数仅受敏感常数的影响,岩石的内应力指数受敏感常数和孔隙度的共同影响。因加载过程存在塑性变形,应力敏感性评价应采用卸载曲线。关键词:油气藏;岩石;渗透率;应力敏感中图分类号:TE135文献标识码:A近年来,人们对油气藏的应力敏感性问题进行了Ki-K[129]SIp=(1)大量的实验研究,但应力敏感程度的评价方法一Ki直没有得到很好的解决。一是没有一个确定的评价标式中SIp———应力敏感指数;Ki———原始地层压力2准,二是没有把实验室的测量结果转换成油气藏条(pi)下的储层渗透率
3、,μm;K———某个地层压力2件,因此,所谓油气藏的应力敏感性都只是实验室里(p)下的储层渗透率,μm。的结论,而非油气藏自身的性质。应力敏感指数是一个跨度指标,在分析油气藏的应力敏感性时,须指明地层压力的下降幅度。为了便1应力敏感现象于油气藏之间的对比和评价,储层岩石的应力敏感指数统一取作地层压力下降10MPa时的数值。本文给所谓应力敏感现象,是指油气藏岩石的渗透率等出的评价标准是:当SIp<011时,为弱敏感;当SIp=物性参数随应力条件而变化的性质。通常情况下,油011~013时,为中等敏感;当SIp>013时,为强敏感。气藏
4、的外应力(外压)为一常数,当从油气藏岩石的孔隙中采出流体时,孔隙压力(内应力,内压)2室内评价从原始地层压力pi下降到p,岩石因而被压缩,岩石的相关物性参数也跟着发生变化(图1)。一些强应式(1)是油气藏内应力敏感指数的定义式,但力敏感性地层,还伴随有地表的明显沉降和储层的垮却无法进行矿场评价,因为Ki和K在矿场上都不容塌现象。易测量。油气藏的应力敏感性评价通常是在实验室的岩心上进行的,一般情况下岩心的内压为常压,通过不断改变外压来测量岩石物性参数的变化。实验可以沿着增大外压的方式进行,也可以沿着减小外压的方式进行。当外压不断增大(
5、加载)时,岩心被压缩,岩石的相关物性参数也跟着减小;当外压不断减小(卸载)时,岩心膨胀,岩石的相关物性参数也跟着储层岩石的应力敏感程度用内应力敏感指数来进增大(图2、图3)。行评价,以渗透率的应力敏感性为例,储层岩石的内渗透率随外应力的变化曲线,称作岩石的实测外应力敏感指数定义为地层压力下降一定数值时渗透率应力敏感曲线。岩石的外应力敏感曲线基本上呈指数的损失百分数,即规律变化(图3),可以用下面的方程进行描述基金项目:四川省应用基础研究资助项目(04JY029-114)。收稿日期:2005203222作者简介:李传亮(1962-),
6、男,四川南充人,教授,从事油藏工程教学与研究。2006年2月李传亮:储层岩石的应力敏感性评价方法·41·渗透率为-b(σ-φpi)Ki=Koe(8)由式(7)还可以计算出油气藏任意地层压力下的岩石渗透率为-b(σ-φp)K=Koe(9)结合式(8),式(9)也可以写成-bφ(pi-p)K=Kie(10)把式(10)代入式(1),得油气藏的内应力敏感指数为-bφ(pi-p)SIp=1-e(11)由于把油气藏的应力敏感指数统一定义为地层压力下降10MPa时的数值,因此,式(11)可以写成-10bφSIp=1-e(12)式(12)就是用实
7、测的岩石外应力敏感曲线评价油气藏内应力敏感程度的计算公式。由式(12)-bσK=Koe(2)可以看出,不仅应力敏感常数b影响岩石的内应力敏式中σ———岩石的外应力,MPa;Ko———外应力为0感程度,岩石孔隙度也对岩石的内应力敏感程度产生2时的岩石渗透率,μm;K———外应力为σ时的岩石渗重要的影响。由于岩石孔隙度通常小于1,因此,油2-1透率,μm;b———岩石的应力敏感常数,MPa。气藏的内应力敏感程度通常小于外应力敏感程度。储层岩石的外应力敏感程度定义为外应力增大一室内测量时,岩心的渗透率是从Ko下降到K定数值时渗透率的损失百
8、分数,即的,而油气藏条件下的渗透率是从Ki下降到K的,2Ko-KSIσ=(3)个过程完全不同,Ko通常远大于Ki,因此,不能直Ko接用实验室的结果来代替地下的情况。把式(2)代入式(3),得-bσSIσ=1-e(4)4应用实例为了便于