欢迎来到天天文库
浏览记录
ID:38126697
大小:292.50 KB
页数:3页
时间:2019-05-27
《答案2014学年第一学期高三数学(理)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2014学年第一学期高三数学教学质量检测试卷参考答案(理)一、填空题1、2、3、4、5、6、7、8、9、10、11、12、13、214、二、选择题题号15161718答案三、解答题19、[解](1)因为底面,与底面所成的角为所以………2分因为,所以…………4分………………6分(2)连接,取的中点,记为,连接,则所以为异面直线与所成的角………………7分计算可得:,,………………9分………………11分异面直线与所成的角为………………12分20、【解】(1)由条件得到,………………2分解得或者………………4分,………………6分(2)…………
2、……2分+2分+2分=6分21、(理)【解】:(1)设,得。所以…………………………………………………………………………4分(2),若存在,满足恒成立即:,………………………………6分3恒成立……………………………………………………8分当为奇数时,………………………………………10分当为偶数时,…………………………………12分所以………………13分,故:………………………14分22、【解】(1)由,得,………………1分因为在时恒成立,所以且△,,………………2分即,,,所以.……………4分(2)由(1)得,由,得,即,………………7分
3、所以,当时,原不等式解集为;当时,原不等式解集为;当时,原不等式解集为空集.………………10分(3),………………11分的图像是开口向上的抛物线,对称轴为直线.假设存在实数,使函数在区间上有最小值.①当,即时,函数在区间上是增函数,所以,即,解得或,因为,所以;………………13分②当,即时,函数的最小值为,即,解得或,均舍去;………………15分③当,即时,在区间上是减函数,所以,即,解得或,因,所以.………………17分3综上,存在实数,或时,函数在区间上有最小值.………………18分23、【解】(1),………………2分………………4分(
4、2)由,………………5分由,即;………………7分由,即………………9分.………………10分(3)由,………………11分故,………………13分当时,以上各式相加得………………15分当时,………………17分,………………18分3
此文档下载收益归作者所有