欢迎来到天天文库
浏览记录
ID:37983845
大小:106.50 KB
页数:3页
时间:2019-05-02
《《两条直线平行与垂直的判定》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《两条直线平行与垂直的判定》教案教学目标1、通过本节课的学习掌握用代数的方法判定两直线平行或垂直的方法.2、利用两条直线平行,倾斜角相等这一性质,推出两条直线平行的判定方法,即∥又利用两条直线垂直时,倾斜角的关系“和几何画板进行验证得到两条直线垂直的判定方法,即并且对特殊情况进行研究.3、通过本节课的学习,可以增强我们用“联系”的观点看问题,进一步增强代数与几何的联系,培养学好数学的信心.教学重难点重点:揭示“两条直线平行(垂直)”与“斜率”之间的关系难点:“两条直线平行(垂直)”与“斜率”之间关系的探究教学过程一、导入设计意图:学生在初中已经学习了两条直线平行(
2、垂直)的判断方法,本节课直接从直线的斜率入手引问是否能判定两条直线的位置关系,使学生很自然的进入今天学习的内容教师:我们在初中已经学习了同一平面内两条直线的位置关系并且学习两条直线平行(垂直)的判定方法,为了在平面直角坐标系内表示直线的倾斜程度,我们引入了直线倾斜角与斜率的概念,并导出了计算斜率的公式,即把几何问题转化为代数问题.那么,我们能否通过直线的斜率k1、k2来判断两条直线的位置关系呢?我们约定:若没有特别说明,说“两条直线与”时,一般是指两条不重合的直线.二、研探新知环节一:两条直线平行的探究设计意图:此环节通过学生观察两条直线平行倾斜角相等探究两条直线
3、平行与斜率之间的关系,学生通过观察,探究与讨论的方式,调动了学生的积极性,激发学生的思维,体会解析几何的思想.在平面直角坐标系中任意做两条平行直线与.探究1:这两条直线的倾斜角有什么关系?由此我们可以得到怎样的结论?∥.探究2:这两条直线的斜率有什么关系?∥.教师:我们得到的这个结论你们能利用所学习的知识证明吗?学生探究讨论完成证明;由∥反之∥教师:上面的结论恒成立吗?有没有特例?xYL1L2学生探究画出图形:教师:那么上面的结论需要添加什么条件?1:如果与不重合,且两条直线都存在斜率,∥2:与可能重合时且两条直线都存在斜率,∥或与重合环节二:两条直线垂直的探究设
4、计意图:学生从熟知的两条直线垂直的图形,利用三角形的外角和定理,找到两条直线的倾斜角之间的关系,探究出两条直线垂直与斜率之间的关系.通过引导学生观察,分析,谈论动手证明结论,学生从中体会学习数学与几何之间的关系,激发学生学习数学的热情.观察图:(利用几何画板演示,并且用特殊角进行验证)探究1:这两条直线的倾斜角有什么关系?能够得到什么结论?教师:上面的结论永远成立吗?学生探究特殊情况:一条直线斜率不存在,另一条直线斜率为零时,上面结论不成立探究2:当k1k2=-1时,l1与l2的位置关系如何?利用几何画板引导学生进行探究:垂直归纳结论:若两条直线与斜率都存在,且分
5、别为k1、k2则三、例题讲解设计意图:通过师生互动,习题分析,培养学生运用知识分析问题和解决问题的数学思维思维能力例1:已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论.教师利给出题,引导学生分析完成,掌握判断两条直线位置关系的方法例2:已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.四边形ABCD是矩形吗?并说明理由.意图:学生掌握如何判断四边形的形状例3:已知A(1,-1),B(2,2),C(3,0)三点,求点D的
6、坐标,使直线CD⊥AB,且CB∥AD四、课堂小结:1:两条直线平行与垂直的判定条件学会运用判定条件判断两条直线的位置关系和四边形或三角形的形状五、布置作业89页A组题6,7
此文档下载收益归作者所有