资源描述:
《改革开放以来中国逻辑学研究的发展》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、21改革开放以来中国逻辑学研究的发展夏素敏张家龙(中国社会科学院哲学研究所,北京100732)摘要:改革开放以来的30年,是我国逻辑学研究取得长足发展的30年。在这30年中,随着国家的日益重视、国际交流的日益频繁,通过几代逻辑工作者的不懈努力,我国逻辑学研究取得了历史性进步。当然,与国际逻辑学研究相比,我国的整体水平仍然不高,仍需继续努力。关键词:30年;中国逻辑学;逻辑思想史中图分类号:B81-09文献标识码:A文章编号:0257-0246(2009)01-0021-10改革开放以来的30年,是我国逻辑学研究取得长
2、足发展的30年。“文革”结束以后,特别是1978年改革开放以来,我国逻辑学研究步入大发展时期。逻辑学研究的队伍被重新组织并逐步壮大起来。1978年、1979年由中国社会科学院哲学研究所等单位先后发起并召开了第一、第二次全国逻辑讨论会,之后成立了中国逻辑学会。在这两次大会上,针对我国逻辑教学和研究水平远远落后于国际水平的实际状况,有些学者提出了逻辑教学与研究现代化的主张。此后进一步发展为中国逻辑学会提出的“全面实现我国逻辑教学和研究的现代化,与国际逻辑教学和研究的水平全面接轨”的发展目标。围绕这个发展目标,我国广大逻辑
3、工作者进行了不懈的努力。作为我国逻辑事业发展的主要组织者,中国逻辑学会及其下属专业委员会坚持“理论与应用相结合”、“提高与普及相结合”的方针,开展了丰富多彩的学术活动,有力地推动了多层次逻辑教学与研究的发展。下面我们根据搜集到的材料对改革开放以来中国逻辑学研究的发展作一个概述,限于篇幅和能力,材料的搜集和概述不尽全面,特别是未能探讨逻辑教学,敬请谅解和指正。一、数理逻辑、哲学逻辑和逻辑哲学20世纪是西方逻辑发展史上的第三大高峰期,逻辑学发展成为与数学、物理学、化学、天文学以及地球科学、空间科学、生命科学等相并列的基础
4、学科,这是20世纪科学系统演化的重大进展。联合国教科文组织早在20世纪70年代已对此予以确认。后来在该组织发布的“科技领域国际标准命名法”中,更把逻辑学列为一级学科之首。但这种学科进化并未体现在我国的学科建制上。在我国通行的学科划分上,“逻辑学”被列为哲学一级学科之下的二级学科,而“数理逻辑”被列为数学一级学科之下的三级学科。这在一定程度上限制了我国逻辑事业的发展。但是通过在改革开放的大潮中对国际逻辑发展状况的了解与研究,我国逻辑学界在如下问题上逐步达成了共识:20世纪逻辑学的重大发展首推演绎逻辑的长足进步,传统演绎
5、逻辑与现代演绎逻辑是同一门学科的不同发展阶段,而不是以往许多学者理解的不同学科;由弗雷格奠定基础并由罗素、希尔伯特和哥德尔等人所完善的一作者简介:夏素敏,中国社会科学院哲学研究所助理研究员,研究方向:现代逻辑、逻辑哲学;张家龙,中国社会科学院哲学研究所研究员,博士生导师,燕山大学特聘教授,中国逻辑学会会长,研究方向:现代逻辑、西方逻辑史和逻辑哲学。22社会科学战线·2009年第1期·中国改革三十年阶逻辑,是整个当代逻辑大厦的基石;形式系统方法是现代逻辑研究的基本方法,四论(集合论、证明论、模型论、递归论)为现代逻辑的
6、发展提供了基本工具;尽管四论的尖端研究属于狭义数理逻辑的范畴,但其基本思想与方法是任何从事当代逻辑研究的学者所应当掌握的。我国哲学学科的逻辑学博士点与硕士点已普遍把“打好数理逻辑基础”作为人才培养的基本要求。我国数学界与计算机学界活跃着一支数理逻辑基础研究队伍,他们在老一代数理逻辑学家的带领下,在逻辑演算与四论研究中取得了丰硕成果,有些成果获得了国家自然科学奖和何梁何利科学与技术进步奖。另有一批数学出身的学者加入到哲学社会科学界逻辑学研究队伍中来,也在逻辑基础研究上作出了许多独特贡献。这里我们介绍在哲学社会科学界的数
7、理逻辑研究成果,主要有如下一些:创制了不用联结词和量词的一阶逻辑系统,对括号作了独到处理,使得括号能兼具联结词的作用也有替代量词的作用,这是继卢卡西维茨以后又一新的逻辑符号和记法系统;构造了几个无穷逻辑的系统,证明了它们的完全性;建立了无穷逻辑的二阶语言的公理系统和模型理论,证明了这个二阶语言中的省略型定理及素模型理论;对可数无穷长语言的可构成模型C进行了较为系统深入的研究;关于递归论的计算机复杂性和实数可计算性方面的研究取得了重要进展。由于公理集合论中布尔值模型的应用、模糊数学中非布尔值逻辑的出现以及计算机科学中多
8、值线路的探讨等,使得多值逻辑的研究有了更多的具体背景和客观需要。对于多值逻辑的一个方面———多值模型论,有的学者做了初步考察,把二值模型中一些基本结构推广到格值模型论中。在模型论方面,一些学者通过合作,为其中某些方法及其结论在其他数学分支中寻找新的应用事例做了一些尝试,并开创了格值模型论并将其发展为比较完整的理论体系。“t可计算与t难于计算的实