资源描述:
《考前函数选择题压轴题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1设V是全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b).则称映射f具有性质P.现给出如下映射:①f1:V→R,f1(m)=x-y,m=(x,y)∈V;②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.其中,具有性质P的映射的序号为________.(写出所有具有性质P的映射的序号)【答案】①③【解析】设a=(x1,y1)∈V,b=(x2,y2)∈V,则λa+(1-λ)b=λ(x1,y1
2、)+(1-λ)(x2,y2)=(λx1+(1-λ)x2,λy1+(1-λ)y2),①f1(λa+(1-λ)b)=λx1+(1-λ)x2-[λy1+(1-λ)y2]=λ(x1-y1)+(1-λ)(x2-y2)=λf1(a)+(1-λ)f1(b),∴映射f1具有性质P;②f2(λa+(1-λ)b)=[λx1+(1-λ)x2]2+[λy1+(1-λ)y2],λf2(a)+(1-λ)f2(b)=λ(x+y1)+(1-λ)(x+y2),∴f2(λa+(1-λ)b)≠λf2(a)+(1-λ)f2(b),∴映射f2不具有性质P;③f3(λa+(1-λ)b)=λx1+(1-λ)x2+(λy1+(1-
3、λ)y2)+1=λ(x1+y1+1)+(1-λ)(x2+y2+1)=λf3(a)+(1-λ)f3(b),∴映射f3具有性质P.故具有性质P的映射的序号为①③.2[2011·湖南卷]给定k∈N,设函数f:N→N满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=1,则其中一个函数f在n=1处的函数值为________________;(2)设k=4,且当n≤4时,2≤f(n)≤3,则不同的函数f的个数为________.[2011·湖南卷](1)a(a为正整数)(2)16【解析】(1)由法则f是正整数到正整数的映射,因为k=1,所以从2开始都是一一对应的,而1可以和任何一个正
4、整数对应,故f在n=1处的函数值为任意的a(a为正整数);(2)因为2≤f(n)≤3,所以根据映射的概念可得到:1,2,3,4只能是和2或者3对应,1可以和2对应,也可以和3对应,有2种对应方法,同理,2,3,4都有两种对应方法,由乘法原理,得不同函数f的个数等于16.3[2011·四川卷]函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②指数函数f(x)=2x(x∈R)是单函数;③若f(x)为单函数,x1,x2∈A且x1≠x2,
5、则f(x1)≠f(x2);④在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(写出所有真命题的编号)[来源:Z§xx§k.Com][2011·四川卷]②③④【解析】本题主要考查对函数概念以及新定义概念的理解.对于①,如-2,2∈A,f(-2)=f(2),则①错误;对于②,当2x1=2x2时,总有x1=x2,故为单函数;对于③根据单函数的定义,函数即为一一映射确定的函数关系,所以当函数自变量不相等时,则函数值不相等,即③正确;对于④,函数f(x)在定义域上具有单调性,则函数为一一映射确定的函数关系,所以④正确.4[2011·北京卷]设A(0,0),B(4,0),
6、C(t+4,4),D(t,4)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N(t)的值域为()A.{9,10,11}B.{9,10,12}第6页共6页C.{9,11,12}D.{10,11,12}5[2011·重庆卷]下列区间中,函数f(x)=在其上为增函数的是()A.(-∞,1]B.C.D.[1,2)62011·福建卷]对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是()A.4和6B.3和1C.2和4D.1和2[201
7、1·福建卷]D【解析】由已知,有f(1)=asin1+b+c,f(-1)=-asin1-b+c,∴f(1)+f(-1)=2c,∵c∈Z,∴f(1)+f(-1)为偶数,而D选项给出的两个数,一个是奇数,一个是偶数,两个数的和为奇数,故选D.7[2011·天津卷]对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-2)⊗(x-x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-∞,-2]∪第6页共6页B.