2014年中考数学二轮复习精品资料 方案设计型问题

2014年中考数学二轮复习精品资料 方案设计型问题

ID:37749012

大小:843.50 KB

页数:17页

时间:2019-05-30

2014年中考数学二轮复习精品资料 方案设计型问题_第1页
2014年中考数学二轮复习精品资料 方案设计型问题_第2页
2014年中考数学二轮复习精品资料 方案设计型问题_第3页
2014年中考数学二轮复习精品资料 方案设计型问题_第4页
2014年中考数学二轮复习精品资料 方案设计型问题_第5页
资源描述:

《2014年中考数学二轮复习精品资料 方案设计型问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2014年中考数学二轮复习精品资料方案设计型问题一、中考专题诠释方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。二、解题策略和解法精讲方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。这类问题的应用性非常突出,题目

2、一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。三、中考考点精讲考点一:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。例11.(2013•吉林)某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一二图示测得数据CD=6.9m,∠ACG=22°,∠BCG=13°,E

3、F=10m,∠AEB=32°,∠AFB=43°参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40sin13°≈0.22,cos13°≈0.97tan13°≈0.23sin32°≈0.53,cos32°≈0.85,tan32°≈0.62sin43°≈0.68,cos43°≈0.73,tan43°≈0.93请你选择其中的一种方法,求教学楼的高度(结果保留整数)思路分析:若选择方法一,在Rt△BGC中,根据CG=即可得出CG的长,同理,在Rt△ACG中,根据tan∠ACG=可得出AG的长,根据AB=AG+BG即可得出结论.若选择方法二,在Rt△AFB中由tan

4、∠AFB=可得出FB的长,同理,在Rt△ABE中,由tan∠AEB=可求出EB的长,由EF=EB-FB且EF=10,可知=10,故可得出AB的长.解:若选择方法一,解法如下:在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵CG==30,在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=,∴AG=30×tan22°≈30×0.40=12,∴AB=AG+BG=12+6.9≈19(米).答:教学楼的高度约19米.若选择方法二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=,∴FB=≈,在Rt△ABE中,

5、∠ABE=90°,∠AEB=32°,∵tan∠AEB=,∴EB=≈,∵EF=EB-FB且EF=10,∴-=10,解得AB=18.6≈19(米).答:教学楼的高度约19米.对应训练1.(2013•内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).1.解:如图,过点A作AF⊥DE

6、于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵,AB=3,∴BC=3,在Rt△AFD中,DF=DE-EF=x-3,∴AF==(x-3),∵AF=BE=BC+CE,∴(x-3)=3+x,解得x=9.答:树高为9米.考点二:设计搭配方案问题这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。例2(2013•昆明)某校七年级准备购买一批

7、笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?思路分析:(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。