最优化方法课程设计参考模版

最优化方法课程设计参考模版

ID:37717964

大小:610.50 KB

页数:18页

时间:2019-05-29

最优化方法课程设计参考模版_第1页
最优化方法课程设计参考模版_第2页
最优化方法课程设计参考模版_第3页
最优化方法课程设计参考模版_第4页
最优化方法课程设计参考模版_第5页
资源描述:

《最优化方法课程设计参考模版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《最优化方法》课程设计题目:共轭梯度法算法分析与实现院系:数学与计算科学学院专业:数学与应用数学姓名:梁婷艳学号:0800730103指导教师:李丰兵日期:2015年12月30日摘要在各种优化算法中,共轭梯度法是非常重要的一种。本文主要介绍的共轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法,它具有超线性收敛速度,而且算法结构简单,容易编程实现。在本次实验中,我们首先分析共轭方向法、对该算法进行分析,运用基于共轭方向的一种算法—共轭梯度法进行无约束优化问题的求解。无约束最优化方法的核心问题是选择搜索方向。共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已

2、知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。根据共轭方向的基本性质,这种方法具有二次终止性。再结合该算法编写matlab程序,求解无约束优化问题,再结合牛顿算法的理论知识,编写matlab程序,求解相同的无约束优化问题,进行比较分析,得出共轭梯度法和牛顿法的不同之处以及共轭梯度法的优缺点。共轭梯度法仅需利用一阶导数信息,避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方

3、向仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便。关键词:共轭梯度法;超线性收敛;牛顿法;无约束优化AbstractInavarietyofoptimizationalgorithms,conjugategradientmethodisaveryimportantone.Inthispaper,theconjugategradientmethodisbetweenthesteepestdescentmethodandNewtonmethodforunconstrainedoptimizationbetweenamethod,ithassuperl

4、inearconvergencerate,andthealgorithmissimpleandeasyprogramming.Inthisexperiment,wefirstanalyzetheconjugatedirectionmethod,thealgorithmanalysis,theuseofaconjugatedirection-basedalgorithm-conjugategradientmethodforunconstrainedoptimizationproblems.Unconstrainedoptimizationmethodistoselectt

5、hecoreissueofthesearchdirection.Conjugategradientmethodisthebasicideaoftheconjugatedescentmethodwiththemostcombinedpointsinthegradientusingtheknownstructureofasetofconjugatedirections,andsearchalongthedirectionofthisgroup,findtheminimumpointofobjectivefunction.Accordingtothebasicnatureof

6、theconjugatedirection,thismethodhasthequadratictermination.Combinedwiththepreparationofthisalgorithmmatlabprogramforsolvingunconstrainedoptimizationproblems,combinedwithNewton’stheoryofknowledge,writingmatlabprogramtosolvethesameproblemofunconstrainedoptimization,comparisonanalysis,theco

7、njugategradientmethodandNewtonmethoddifferentOfficeandtheadvantagesanddisadvantagesoftheconjugategradientmethod.Conjugategradientmethodusingonlyfirstderivativeinformation,toavoidtheNewtonmethodrequiresstorageandcomputingtheinverseHessematrixandshortcomings,isnotonlythecon

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。