二次函数在闭区间上的最值归纳

二次函数在闭区间上的最值归纳

ID:37715979

大小:238.86 KB

页数:3页

时间:2019-05-29

二次函数在闭区间上的最值归纳_第1页
二次函数在闭区间上的最值归纳_第2页
二次函数在闭区间上的最值归纳_第3页
资源描述:

《二次函数在闭区间上的最值归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数在闭区间上的最值归纳二次函数在闭区间上的最大、最小值问题探讨设,则二次函数在闭区间上的最大、最小值有如下的分布情况:即图象最大、最小值对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:(1)若,则,;(2)若,则,另外,当二次函数开口向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。二次函数在闭区间上的最值练习例1、函数在上有最大值5和最小值2,求的值。解:对称轴,故函数在区间上单调。(1)当时,函数在区间上是增函数,故;(2)当时,函数在区间上是减函数,故例2、求函数的最

2、小值。解:对称轴(1)当时,;(2)当时,;(3)当时,改:1.本题若修改为求函数的最大值,过程又如何?解:(1)当时,;(2)当时,。2.本题若修改为求函数的最值,讨论又该怎样进行?解:(1)当时,,;(2)当时,,;(3)当时,,;(4)当时,,。例3、求函数在区间上的最小值。解:对称轴(1)当即时,;(2)当即时,;(3)当即时,例4、讨论函数的最小值。解:,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线,,当,,时原函数的图象分别如下(1),(2),(3)因此,(1)当时,;(2)当时,;(3)当时,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。