欢迎来到天天文库
浏览记录
ID:37669286
大小:842.55 KB
页数:9页
时间:2019-05-28
《线性回归、logistic回归和一般回归》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、对回归方法的认识JerryLeadcsxulijie@gmail.com2011年2月27日1摘要本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,属于有监督学习中的一种方法。该方法的核心思想是从离散的统计数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释。2问题引入假设有一个房屋销售的数据如下:面积(m^2)销售价钱(万元)12325015032087160102220……
2、这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下:如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢?我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回。如果用一条直线去拟合,可能是下面的样子:绿色的点就是我们想要预测的点。首先给出一些概念和常用的符号。房屋销售记录表:训练集(trainingset)或者训练数据(trainingdata),是我们流程中的输入数据,一般称为x房屋销售价钱:输出数据,一般称为y拟合的函数(或者称为
3、假设或者模型):一般写做y=h(x)训练数据的条目数(#trainingset),:一条训练数据是由一对输入数据和输出数据组成的输入数据的维度n(特征的个数,#features)这个例子的特征是两维的,结果是一维的。然而回归方法能够解决特征多维,结果是一维多离散值或一维连续值的问题。3学习过程下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。4线性回归线性回归假设特征和结果满足线性关系。其实线
4、性关系的表达能力非常强大,每个特征对结果的影响强弱可以有前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。我们用X1,X2..Xn去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:θ在这儿称为参数,在这的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0=1,就可以用向量的方式来表示了:我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进
5、行评估,一般这个函数称为损失函数(lossfunction)或者错误函数(errorfunction),描述h函数不好的程度,在下面,我们称这个函数为J函数在这儿我们可以做出下面的一个错误函数:这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2是为了在求导的时候,这个系数就不见了。至于为何选择平方和作为错误估计函数,讲义后面从概率分布的角度讲解了该公式的来源。如何调整θ以使得J(θ)取得最小值有很多方法,其中有最小二乘法(minsquare),是一种完全是数学描述的方法,和梯度下降法。5梯度下
6、降法在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要在J(θ)最小的情况下才能确定。因此问题归结为求极小值问题,使用梯度下降法。梯度下降法最大的问题是求得有可能是全局极小值,这与初始点的选取有关。梯度下降法是按下面的流程进行的:1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为迭代更新的方式有两种,一种是批梯度下降,也就是对全部的训练数据求得误差后再对θ进行更
7、新,另外一种是增量梯度下降,每扫描一步都要对θ进行更新。前一种方法能够不断收敛,后一种方法结果可能不断在收敛处徘徊。一般来说,梯度下降法收敛速度还是比较慢的。另一种直接计算结果的方法是最小二乘法。6最小二乘法将训练特征表示为X矩阵,结果表示成y向量,仍然是线性回归模型,误差函数不变。那么θ可以直接由下面公式得出但此方法要求X是列满秩的,而且求矩阵的逆比较慢。7选用误差函数为平方和的概率解释假设根据特征的预测结果与实际结果有误差∈(?),那么预测结果???(i)和真实结果?(?)满足下式:一般来讲,误差满足平均值为0的高斯分布,也就是正态分布
8、。那么x和y的条件概率也就是这样就估计了一条样本的结果概率,然而我们期待的是模型能够在全部样本上预测最准,也就是概率积最大。这个概率积成为最大似然估计。我们希望在最大似然估计得到
此文档下载收益归作者所有