Diffractive energy spreading and its semiclassical limit

Diffractive energy spreading and its semiclassical limit

ID:37657579

大小:310.28 KB

页数:19页

时间:2019-05-27

Diffractive energy spreading and its semiclassical limit_第1页
Diffractive energy spreading and its semiclassical limit_第2页
Diffractive energy spreading and its semiclassical limit_第3页
Diffractive energy spreading and its semiclassical limit_第4页
Diffractive energy spreading and its semiclassical limit_第5页
资源描述:

《Diffractive energy spreading and its semiclassical limit》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、DiffractiveenergyspreadinganditssemiclassicallimitAlexanderStotlandandDoronCohenDepartmentofPhysics,Ben-GurionUniversity,Beer-Sheva84005,IsraelAbstract.Weconsiderdrivensystemswherethedrivinginducesjumpsinenergyspace:(1)particlespulsedbyasteppotential;(2)particlesinaboxwithamovingwall;(3)p

2、articlesinaringdrivenbyanelectro-motive-force.Inallthesecasestheroutetowardsquantum-classicalcorrespondenceishighlynon-trivial.Someinsightisgainedbyobservingthatthedynamicsinenergyspace,wherenisthelevelindex,isessentiallythesameasthatofBlochelectronsinatightbindingmodel,wherenisthesitein

3、dex.Themeanlevelspacingislikeaconstantelectricfieldandthedrivinginduceslongrangehopping∝1/(n−m).1.IntroductionConsiderasystemwhichisdescribedbyaHamiltonianH(X(t)),wheretheparameterX(t)istimedependent.ForsuchsystemtheenergyEisnotaconstantofthemotion.Rather,thedrivinginducesspreadinginenerg

4、yspace.Assumingthatthesystemispreparedatt=0inamicrocanonicalstate,onewondershowtheenergydistributionρt(E)lookslikeatalatertime.Inparticular,onemaywonderwhetherthequantumρt(E)issimilartothecorrespondingclassicaldistribution.Inthe“quantumchaos”literatureitiscustomarytodistinguishbetweenacl

5、assicaltimescaleτclandaquantumbreaktimet∗.Thelattergoestoinfinityinthe“~→0”limit.Aprototypemodelisthe“quantumkickedrotator”[1]wheretheenergyspreadingisdiffusiveuptot∗whileforlargertimesoneobservessaturationduetoadynamicallocalizationeffect.Inthisworkweanalyzemuchsimplersystemswherethebreakt

6、imet∗,ifexists,ismuchlargerthananyphysicallyrelevanttimescale.Infactonemayassumethatthetimetoftheevolutioniscomparablewiththeclassical(short)timescale.Insuchcircumstancesonenaivelywouldexpectquantumtoclassicalcorrespondence(QCC).Butinfactthetheoryismuchmorecomplicated[2].Onehastodistingu

7、ishbetween•DetailedQCC•RestrictedQCCDetailedQCCmeansthatallthemomentsr=1,2,3,...ofthequantummechanicaldistributionρt(E)aresimilartotheclassicalresult,whilerestrictedQCCrefersonlyarXiv:cond-mat/0605591v2[cond-mat.mes-hall]10Aug2006tother=1,2moments.Itturnsoutthatthelattera

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。