Primal-Dual Method

Primal-Dual Method

ID:37582155

大小:272.49 KB

页数:8页

时间:2019-05-25

Primal-Dual Method_第1页
Primal-Dual Method_第2页
Primal-Dual Method_第3页
Primal-Dual Method_第4页
Primal-Dual Method_第5页
资源描述:

《Primal-Dual Method》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ORIE634ApproximationAlgorithmApril21,2012Lecture8Lecturer:Yang.LiScribe:Yang.Li8.1ThePrimal-DualMethod8.1.1TheBasicMethodOurmeta-methodfordesigningapproximationalgorithms:1.Formulateproblemasanintegerprogram2.RelaxtoanLP3.UseLPtoobtainanewoptimalsolutionAnexampl

2、e:HittingSet�Input:—groundsetE={e1,e2,...,en}—subsetsT1,T2,...,Tp⊆E—costsce≥0e∈E�Goal:Findmin-costA⊆Es.t.A∩Ti≠ϕ∀i.1OurBasicMethod:Step1Min∑cexee∈Es.t.∑xe≥1∀ie∈Tixe∈{0,1}Step2RelaxittoanLP:xe∈{0,1}→xe≥0Step3Considerthedualprogramming:Max∑yiis.t.∑ye≤ce∀ei:e∈Tiyi≥0

3、BasicIdeaofPrimal-DualMethod:Startfromandualfeasiblesolution(notnecessaryoptimal)i.e.y←0;whiletheredoesnotexistanintegralsolutionobeyingprimalcomplementaryslacknessxe≥0⇒∑ye=cei:e∈Tiwethengetadirectionofincreasefordual;continuethisprocessandatlastwewillgetaprimal

4、feasiblesolutionobeyingprimalcomplementaryslackness.2Algorithm1:Primal-Dual1y←0A←ϕWhileAisnotfeasibleFindviolatedTk(i.e.Tks.t.A∩Tk=ϕ)Increaseykuntil∃e∈Tks.t.∑ye=cei:e∈TiA←A∪{e}ReturnAPerformanceGuaranteeAnalysis:BytheconstructionofA,∑ce=∑∑yi=∑A∩Tiyie∈Ae∈Ai:e∈Tii

5、Ifthereexistsanαs.t.A∩Ti≤α,thenwehave:∑ce≤α∑yi≤αOPT,e∈Aiandtheabovealgorithmwouldbeanα-approximationalgorithm.ASpecialCase:VertexCoverProblemisaspecialcaseofHittingSetProblem,because:—groundsetV—subsetsTi={u,v}foreach(u,v)∈E—costsce≥0e∈VObviously,Ti=2⇒A∩Ti≤2⇒a2-

6、approximationalgorithm.3Application1:FeedbackVertexSetProblemFeedbackVertexSetinUndirectedGraphs�Input:—undirectedgraphG=(V,E)—weightswi≥0∀i∈V�Goal:FindS⊆Vminimizing∑wis.t.for∀cycleCinG,C∩S≠ϕ.i∈S(Equivalently,findamin-weightsetofverticesSs.t.removingSfromthegrap

7、hcausestheremaininggraphtobeacyclic.)FormulatedasaHittingSetProblem:�GroundsetV�Costswi�Setstohit:Ti=CiforeachcycleCiingraphAnimportantFactconcerningthisproblem:IntheFeedbackVertexSetProblem,everyinputgraphG⇔agraphG'withnodegree1verticesandeverydegree2vertexisad

8、jacenttoavertexofhigherdegree.TheoreticalPreparation:Lemma8.1Ineverynon-emptygraphinwhichtherearenodegree1verticesands.t.Foreachvertexofdegree2everyneighborhashigherd

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。