欢迎来到天天文库
浏览记录
ID:37565841
大小:669.81 KB
页数:30页
时间:2019-05-12
《直线和圆的位置关系(第7课时)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线与圆的位置关系一、复习提问1、点和圆的位置关系有几种?2、“大漠孤烟直,长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象。如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线与圆的公共点的个数想象一下,直线和圆的位置关系有几种?(1)dr点在圆外观察三幅太阳落山的照片,地平线与太阳的位置关系是怎样的?a(地平线)你发现这个自然现象反映出直线和圆的位置关系有哪几种?(1)(3)(2)Olllllllllllll直线和圆的位置关系Ol(1
2、)直线和圆有两个公共点时,叫做直线和圆相交;这时直线叫做圆的割线.Ol(2)直线和圆有唯一公共点时,叫做直线和圆相切;这时直线叫做圆的切线.唯一的公共点叫做切点.Ol(3)直线和圆没有公共点时,叫做直线和圆相离.1、直线与圆相离、相切、相交的定义。直线和圆的位置关系是用直线和圆的公共点的个数来定义的,即直线与圆没有公共点、只有一个公共点、有两个公共点时分别叫做直线和圆相离、相切、相交。思考:一条直线和一个圆,如果有公共点能不能多于两个呢?相离相交相切切点切线割线交点交点快速判断下列各图中直线与圆的位置关系.
3、Ol.O1.Ol.O2lL.(2)直线l和⊙O相切2、用圆心到直线的距离和圆半径的数量关系,来揭示圆和直线的位置关系。(1)直线l和⊙O相离(3)直线l和⊙O相交d>rd=rd4、:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d>5cmd=5cmd<5cm三、练习与例题0cm≤2103.直线和圆有2个交点,则直线和圆_________;直线和圆有1个交点,则直5、线和圆_________;直线和圆有没有交点,则直线和圆_________;例在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.ACBD解:过C作CD⊥AB于D,在Rt△ABC中,根据三角形面积公式有CD·AB=AC·BC即圆心C到AB的距离d=2.4cm.(1)当r=2cm时,有d>r,因此⊙C和AB相离.(2)当r=2.4cm时,有d=r,因此⊙C和AB相切.(3)当r=3cm时,有d6、7、△OAB是等腰三角形,OC是底边AB上的中线∴OC⊥AB∴AB是⊙O的切线.OAL思考将上页思考中的问题反过来,如果L是⊙O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?一定垂直切线的性质定理:圆的切线垂直于过切点的半径切线长定理如图:过⊙O外一点P有两条直线PA、PB与⊙O相切.ABPO在经过圆外一点的圆的切线上,这点和切点间的线段的长,叫做切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.平分切点所成的两弧;垂直平分切点所成的弦.例1已知,如8、图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,由勾股定理,得PA2
4、:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d>5cmd=5cmd<5cm三、练习与例题0cm≤2103.直线和圆有2个交点,则直线和圆_________;直线和圆有1个交点,则直
5、线和圆_________;直线和圆有没有交点,则直线和圆_________;例在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.ACBD解:过C作CD⊥AB于D,在Rt△ABC中,根据三角形面积公式有CD·AB=AC·BC即圆心C到AB的距离d=2.4cm.(1)当r=2cm时,有d>r,因此⊙C和AB相离.(2)当r=2.4cm时,有d=r,因此⊙C和AB相切.(3)当r=3cm时,有d
6、7、△OAB是等腰三角形,OC是底边AB上的中线∴OC⊥AB∴AB是⊙O的切线.OAL思考将上页思考中的问题反过来,如果L是⊙O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?一定垂直切线的性质定理:圆的切线垂直于过切点的半径切线长定理如图:过⊙O外一点P有两条直线PA、PB与⊙O相切.ABPO在经过圆外一点的圆的切线上,这点和切点间的线段的长,叫做切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.平分切点所成的两弧;垂直平分切点所成的弦.例1已知,如8、图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,由勾股定理,得PA2
7、△OAB是等腰三角形,OC是底边AB上的中线∴OC⊥AB∴AB是⊙O的切线.OAL思考将上页思考中的问题反过来,如果L是⊙O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?一定垂直切线的性质定理:圆的切线垂直于过切点的半径切线长定理如图:过⊙O外一点P有两条直线PA、PB与⊙O相切.ABPO在经过圆外一点的圆的切线上,这点和切点间的线段的长,叫做切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.平分切点所成的两弧;垂直平分切点所成的弦.例1已知,如
8、图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,由勾股定理,得PA2
此文档下载收益归作者所有