欢迎来到天天文库
浏览记录
ID:37546520
大小:651.50 KB
页数:30页
时间:2019-05-12
《《2.4弦切角的性质》课件3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第4课时 弦切角的性质【课标要求】1.通过对弦切角定理的探究,体会分类思想、特殊化思想和化归思想在数学思想中的作用.2.理解弦切角定理,能应用定理证明相关的几何问题.【核心扫描】1.弦切角定理的理解.(重点)2.用弦切角定理解决有关问题.(难点)自学导引1.弦切角的概念定义:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.如图所示,∠ACD和∠BCD都是弦切角.推敲引申:(1)弦切角必须具备三个条件:①顶点在圆上(顶点为圆切线的切点);②一边和圆相切(一边所在直线为圆的切线);③一边和圆相交(一边为圆的过切点的
2、弦).三者缺一不可,例如图中,∠CAD很像弦切角,但它不是弦切角,因为AD与圆相交,∠BAE也不一定是弦切角,只有已知AE切圆于点A,才能确定它是弦切角.(2)弦切角也可以看做圆周角的一边绕其顶点旋转到与圆相切时所成的角.因此,弦切角与圆周角存在密切关系.(2)弦切角定理的证明同圆周角定理的证明极相似,同样是按圆心与角的位置关系分情况(如图所示)进行证明.①圆心在弦切角∠BAC一边上;②圆心在弦切角∠BAC外部;③圆心在弦切角∠BAC内部.(3)由定理可得:弦切角的度数等于它所夹的弧的度数的一半.名师点睛1.圆心角、圆
3、周角、弦切角三者之间的区别圆心角圆周角弦切角图形顶点位置在圆心O在圆周上在圆周上两边与圆的关系两边都和圆相交两边都和圆相交一边和圆相切,一边和圆相交2.与弦切角定理有关的结论(1)弦切角的度数等于它所夹的弧的度数的一半.(2)弦切角的度数等于它所夹的弧所对的圆心角度数的一半.(3)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.如图所示,因为∠BDE与∠BED所夹的弧是同一个弧,所以∠BDE=∠BED;如果EM=DM,也可以得出∠CEM=∠ADM.3.在圆中有丰富的相等的角,利用这些相等的角我们能找出许多与圆有关的
4、相似三角形,进而能得到许多线段的数量关系.因而,充分利用圆的有关性质定理如圆周角定理、圆内接四边形性质定理、弦切角定理等结论,架设与三角形有关问题的桥梁,达到解决问题的目的.由此可见,弦切角是很重要的与圆相关的角.其主要功能在于协调与圆相关的各种角(如圆心角、圆周角等),是架设圆与三角形全等、三角形相似、与圆相关的各种直线(如弦、割线、切线)位置关系的桥梁,因而弦切角也是确定圆的几何定理的关键环节(如证明切割线定理).反思感悟(1)利用弦切角解决与角有关问题的步骤:①根据图形及弦切角的定义找出与题目有关的弦切角;②利用
5、弦切角定理找出与其相等的角;③综合运用相关的知识进行角的求解.(2)注意事项:①要注意观察图形,不要想当然.图形是最好的指导,要学会让图形“说话”,寻找解题的突破口,要特别重视数形结合思想的应用.②要注意圆周角定理、圆内接四边形的性质定理、相似三角形、射影定理等知识的综合应用.【变式1】如图所示,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.证明 法一如图所示,连接OC.∵CD是⊙O的切线,∴OC⊥CD.又∵AD⊥CD,∴OC∥AD.由此得∠ACO=∠CAD.∵OC=O
6、A,∴∠CAO=∠ACO,∴∠CAD=∠CAO.故AC平分∠DAB.法二∵CD为⊙O的切线,连接CB,如图所示,由弦切角定理知∠ACD=∠B.①又∵AB为直径,C为⊙O上一点,∴∠ACB=90°,∴∠B+∠CAB=90°.②又∵AD⊥CD,∴∠DAC+∠ACD=90°.③由①②③知∠DAC=∠CAB,∴AC平分∠DAB.题型二 利用弦切角解决与长度有关的问题【例2】如图,已知MN是⊙O的切线,A为切点,MN平行于弦CD,弦AB交CD于E,求证:AC2=AE·AB.[思维启迪]欲证AC2=AE·AB,只需证此三条线段所在
7、的△ACE与△ABC相似,连结BC.反思感悟(1)此题主要是利用弦切角的性质去证明两个角相等,再利用三角形相似证比例中项,这种类型的题较常见.(2)证明线段相等,借助于弦切角定理和圆的其他性质(如等弧所对的弦相等)以及三角形有关知识我们可以得到特殊三角形或全等三角形,从而证得线段相等.题型三 弦切角的综合应用【例3】如图所示,CF是⊙O的直径,CB是⊙O的弦,CB的延长线与过点F的⊙O的切线交于点P.(1)如图①,如果∠P=45°,PF=10,求⊙O的半径长;(2)如图②,如果E是BC上的一点,且满足PE2=PB·PC
8、,连接EF并延长交⊙O于点A,求证:点A是BC的中点.[思维启迪](1)由切线的性质定理,知△PCF是等腰直角三角形,因此求出CF的长,进而求出半径;(2)中,利用弦切角定理,可以求出两个三角形中,有一组角相等,然后利用相似三角形的判定及性质,可证出AC与AB所对的圆周角相等,从而证出点A是BC的中点.(1)解∵PF是切线,∴△P
此文档下载收益归作者所有