欢迎来到天天文库
浏览记录
ID:37451199
大小:1.07 MB
页数:16页
时间:2019-05-24
《黄高期中复习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、概率知识要点及练习题一、随机事件的概率1、必然事件:一般地,把在条件S下,一定会发生的事件叫做相对于条件S的必然事件。2、不可能事件:把在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件。3、确定事件:必然事件和不可能事件统称相对于条件S的确定事件。4、随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件。5、频数:在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。6、频率:事件A出现的比例。7、概率:随机事件A的概率是频
2、率的稳定值,反之,频率是概率的近似值.二、概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。2、游戏的公平性:抽签的公平性。3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。5、试验与发现:孟德尔的豌豆试验。6、遗传机理中的
3、统计规律。三、概率的基本性质1、事件的关系与运算(1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作。不可能事件记作。(2)相等。若,则称事件A与事件B相等,记作A=B。(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。(5)事件A与事件B互斥:为不可能事件,即,即事件A与事件B在任何一次试验中并不会同时发生。(6)事件A与事件B
4、互为对立事件:为不可能事件,为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。2、概率的几个基本性质(1).(2)必然事件的概率为1..-16-(3)不可能事件的概率为0..(4)事件A与事件B互斥时,P(AB)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则为必然事件,.四、古典概型1、基本事件:基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间的和。2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2
5、)每个基本事件出现的可能性相等。具有这两个特点的概率模型称为古典概型。3、公式:(整数值)随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数?——书上例题。五、几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。2、几何概型中,事件A发生的概率计算公式:例题:例1.某产品有3只次品,7只正品,每次取1只测试,取后不放回,求:(1)恰好到第5次3只次品全部被测出的概率;(2)恰好到第k次3只次品全部被测出的概率的最大值和最小值。错解:(1)P(A
6、)=(2)。错因分析:错解(1)的错误的原因在于忽视了“不放回摸球”问题的每一次摸球是不独立的;而错解(2)的错误的原因则在于忽视了“不放回摸球”问题的每一次摸球袋内球的总数是变的(比前一次少一个)。正解:(1)(2)-16-当时,;当时,。例2.甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解:设“甲恰好投中2次”为事件A,“乙恰好投中2次”为事件B,则两人恰好投中2次为A+B。所以P(A+B)=P(A)+P(B)=。错因分析:本题解答错误的原因是把相互
7、独立同时发生的事件当成互斥事件来考虑。将两人都恰好投中2次理解为“甲恰好投中2次”与“乙恰好投中2次”的和。正解:设“甲恰好投中2次”为事件A,“乙恰好投中2次”为事件B,则两人恰好都投中2次为AB。所以P(AB)=P(A)×P(B)=数列知识点总结和训练题数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列的第项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即.3.递推公式:如果已知数列的第一项(或前几项),且任何一项与它的
8、前一项(或前几项)间的关系可以用一个式子来表示,即或,那么这个式子叫做数列的递推公式.如数列中,,其中是数列的递推公式.4.数列的前项和与通项的公式①;②.5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何,均有.②递减数列:对于任何,均有.③摆动数列:例如:④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数使.⑥
此文档下载收益归作者所有