推理与证明课件

推理与证明课件

ID:37404903

大小:868.50 KB

页数:38页

时间:2019-05-12

推理与证明课件_第1页
推理与证明课件_第2页
推理与证明课件_第3页
推理与证明课件_第4页
推理与证明课件_第5页
资源描述:

《推理与证明课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题15推理与证明推理与证明主干知识梳理热点分类突破真题与押题1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.考情解读3主干知识梳理1.合情推理(1)归纳推理①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②归纳推理的思维过程如下:实验、观察概括、推广猜测一般性结论→→(2)类比推理①类比推理是

2、由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②类比推理的思维过程如下:观察、比较联想、类推猜测新的结论→→2.演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结

3、论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.3.直接证明(1)综合法用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图表示为:P⇒Q1Q1⇒Q2Q2⇒Q3Qn⇒Q→→→…→(2)分析法用Q表示要证明的结论,则分析法可用框图表示为:Q⇐P1P1⇐P2P2⇐P3得到一个明显成立的条件→→→…→4.间接证明反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命

4、题)的过程.用反证法证明命题“若p,则q”的过程可以用如图所示的框图表示.肯定条件p否定结论q导致逻辑矛盾“既p,又綈q”为假“若p,则q”为真→→→热点一归纳推理热点二类比推理热点三直接证明和间接证明热点分类突破例1(1)有菱形纹的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()热点一归纳推理思维启迪根据三个图案中的正六边形个数寻求规律;A.26B.31C.32D.36解析有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组

5、成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.答案B(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是()A.48,49B.62,63C.75,76D.84,85思维启迪靠窗口的座位号码能被5整除或者被5除余1.解析由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D符合条件.答案

6、D归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想.思维升华变式训练1(1)四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第______号座位上.A.1B.2C.3D.4解析考虑小

7、兔所坐的座位号,第一次坐在1号位上,第二次坐在2号位上,第三次坐在4号位上,第四次坐在3号位上,第五次坐在1号位上,因此小兔的座位数更换次数以4为周期,因为202=50×4+2,因此第202次互换后,小兔所在的座位号与小兔第二次互换座位号所在的座位号相同,因此小兔坐在2号位上,故选B.答案B热点二类比推理思维启迪平面几何中的面积可类比到空间几何中的体积;解析平面几何中,圆的面积与圆的半径的平方成正比,而在空间几何中,球的体积与半径的立方成正比,所以=热点三直接证明和间接证明(1)求数列{an},{bn}的通项公式

8、;思维启迪利用已知递推式中的特点构造数列{1-};由anan+1<0,知数列{an}的项正负相间出现,(2)证明:数列{bn}中的任意三项不可能成等差数列.思维启迪否定性结论的证明可用反证法.证明假设存在某三项成等差数列,不妨设为bm、bn、bp,其中m、n、p是互不相等的正整数,可设m

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。