人教版八年级下册数学教案(全册)

人教版八年级下册数学教案(全册)

ID:37351747

大小:8.09 MB

页数:187页

时间:2019-05-22

人教版八年级下册数学教案(全册)_第1页
人教版八年级下册数学教案(全册)_第2页
人教版八年级下册数学教案(全册)_第3页
人教版八年级下册数学教案(全册)_第4页
人教版八年级下册数学教案(全册)_第5页
资源描述:

《人教版八年级下册数学教案(全册)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】了解二次根式的概念,理解是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.【教学重点】二次根式的概念及≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落

2、到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考通过对上述问题的探究,可得到形如的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.二次根式:一般地,我们把形如(a≥0)形式的式子称为二次根式,其中“”称为二次根号.针对上述定义,教师可强调以下几点:(1)

3、中,a必须是大于等于0的数或式子,否则它就没有意义了;(2)尽管=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0时,表示a的算术平方根,而一个非负数的算术平方根必然也是非负数,因而总有≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1)有二次根号“”;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】

4、对于例3,教师应引导学生分析题目特征,抓住解决问题的突破口,选择恰当的方法来获得解题思路,进一步体验中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题

5、,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与=a(a≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】=a(a≥0),=a(a≥0)及其应用.【教学难点】用探究的方法探索=a(a≥0)及=a(a≥0)的结论

6、.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:=a(a≥0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1)的思考,你能确定(a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解

7、和记忆,最后师生共同完成对知识的归纳总结.【归纳结论】一般地,根据算术平方根的意义,有=a(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1)()2;(2)(2)2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。