欢迎来到天天文库
浏览记录
ID:37336742
大小:222.00 KB
页数:11页
时间:2019-05-22
《初中数学八上下册知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数学知识点汇总[八年级](上册)第一章勾股定理acb图1※直角三角形两直角边的平和等于斜边的平方。即:(由直角三角形得到边的关系),<如图1所示>如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。满足条件的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章实数※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那
2、么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。※正数的立方根是正数;0的立方根是0;负数的立方根是负数。第三章图形的平移与旋转平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。COABD
3、FE图2旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这个定点叫旋转中心,转动的角度叫旋转角。旋转的性质:旋转后的图形与原图形的大小和形状相同;旋转前后两个图形的对应点到旋转中心的距离相等;对应点到旋转中心的连线所成的角度彼此相等。第11页(例:如图2所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。)第四章四平边形性质探索※平
4、行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。菱形的定义:一组邻边相等的平行四边形
5、叫做菱形。※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。※菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)
6、。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。※推论:直角三角形斜边上的中线等于斜边的一半。正方形的定义:一组邻边相等的矩形叫做正方形。※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):第11页※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。P
7、(a、b)aAbBo图4※两条腰相等的梯形叫做等腰梯形。※一条腰和底垂直的梯形叫做直角梯形。※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。※多边形内角和:n边形的内角和等于(n-2)·180°※多边形的外角和都等于360°※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。※中心对称图形上的每一对对应点所连成的线段被对称中心平分。第五章位置的确定※平面直角坐标系概念:在平面内,两条互相垂直且有公共原
8、点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。※在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。
此文档下载收益归作者所有