高一数学上下册知识点总结

高一数学上下册知识点总结

ID:21245939

大小:1.25 MB

页数:41页

时间:2018-10-20

高一数学上下册知识点总结_第1页
高一数学上下册知识点总结_第2页
高一数学上下册知识点总结_第3页
高一数学上下册知识点总结_第4页
高一数学上下册知识点总结_第5页
资源描述:

《高一数学上下册知识点总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中高一数学上下册知识点必修1各章知识点总结  第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。  2、集合的中元素的三个特性:  1.元素的确定性;2.元素的互异性;3.元素的无序性  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。  

2、(4)集合元素的三个特性使集合本身具有了确定性和整体性。  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:  非负整数集(即自然数集)记作:N  正整数集N*或N+整数集Z有理数集Q实数集R  关于“属于”的概念  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A41  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。  描述法:将

3、集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。  ①语言描述法:例:{不是直角三角形的三角形}  ②数学式子描述法:例:不等式x-3>2的解集是{x?R

4、x-3>2}或{x

5、x-3>2}  4、集合的分类:  1.有限集含有有限个元素的集合  2.无限集含有无限个元素的集合  3.空集不含任何元素的集合例:{x

6、x2=-5}   二、集合间的基本关系  1.“包含”关系—子集  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA  2.

7、“相等”关系(5≥5,且5≤5,则5=5)  实例:设A={x

8、x2-1=0}B={-1,1}“元素相同”  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B  ①任何一个集合是它本身的子集。AíA  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)  ③如果AíB,BíC,那么AíC  ④如果AíB同时BíA那么A=B  3.不含任何元素的集合叫做空集,记为Φ41  规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算  1.交集

9、的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.  记作A∩B(读作”A交B”),即A∩B={x

10、x∈A,且x∈B}.  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x

11、x∈A,或x∈B}.  3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,  A∪φ=A,A∪B=B∪A.  4、全集与补集  (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)  (2)全集:如果集合S含

12、有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)

13、x∈A}叫做函数的值域.  2如果只给出解析式y=f(x),而没有指明它的定义域

14、,则函数的定义域即是指能使这个式子有意义的实数的集合;413函数的定义域、值域要写成集合或区间的形式.  定义域补充  能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。