欢迎来到天天文库
浏览记录
ID:37295182
大小:542.15 KB
页数:7页
时间:2019-05-21
《基于深度学习的太阳能电池片表面缺陷检测方法-王宪保》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第27卷第6期模式识别与人工智能Vol.27No.62014年6月PR&AIJune2014基于深度学习的*太阳能电池片表面缺陷检测方法1,21112王宪保李洁姚明海何文秀钱沄涛1(浙江工业大学信息工程学院杭州310023)2(浙江大学计算机科学与技术学院杭州310027)摘要目前对太阳能电池片的缺陷检测仍依赖人工完成,很难通过传统的CCD成像系统自动识别.作为一种多层神经网络学习算法,深度学习因对输入样本数据强大的特征提取能力而受到广泛关注.文中提出一种基于深度学习的太阳能电池片表面缺陷检测方法,该方法首先根据样本特征建
2、立深度置信网络(DBN),并训练获取网络的初始权值;然后通过BP算法微调网络参数,取得训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测.实验表明DBN能较好地建立上述映射关系,且准确、快速地进行缺陷检测.关键词深度学习,缺陷检测,限制玻尔兹曼机(RBM),深度置信网络(DBN)中图法分类号TP391SolarCellsSurfaceDefectsDetectionBasedonDeepLearning1,21112WANGXian-Bao,LIJie,YAOMing-Ha
3、i,HEWen-Xiu,QIANYun-Tao1(CollegeofInformationEngineering,ZhejiangUniversityofTechnology,Hangzhou310023)2(CollegeofComputerScienceandTechnology,ZhejiangUniversity,Hangzhou310027)ABSTRACTDefectsofsolarcellsaredetectedmainlybymanualoperation,andtheyaredifficulttobede
4、tectedautomaticallybytraditionalcharge-coupleddevice(CCD)imagingsystem.Asatrainingmulti-layerneuralnetwork,deeplearningdrawsgreatattentionduetoitsstrongabilitytoextractfeaturesfrominputsampledata.Amethodforsolarcellssurfacedefectsdetectionbasedondeeplearningisprop
5、osed.Firstly,deepbeliefnetworks(DBN)areestablishedandtrainedaccordingtothesamplefeaturestoobtaintheinitialweightsofthenetworks.Then,thetraditionalBPalgorithmisconductedtofine-tunethenetworkparameterstogetthemappingrelationshipbetweenthetrainingsamplesandthedefect-
6、freetemplate.Finally,thedefectsoftestingsamplesaredetectedbythecontrastbetweenthereconstructionimageandthedefectimage.ExperimentalresultsshowthatDBNperfectlyestablishesthemapping*国家自然科学基金项目(No.61070113)、浙江省自然科学基金项目(No.LY14F030009)资助收稿日期:2014-01-07;修回日期:2014-02-25作
7、者简介王宪保(通讯作者),男,1977年生,博士,讲师,主要研究方向为模式识别、神经网络、图像处理及其在缺陷检测中的应用等.E-mail:wxb@zjut.edu.cn.李洁,女,1988年生,硕士研究生,主要研究方向为模式识别、图像处理、图像理解等.姚明海,男,1963年生,教授,博士生导师,主要研究方向为模式识别、智能控制、物联网等.何文秀,女,1979年生,博士研究生,讲师,主要研究方向为人工智能、无线传感网络.钱沄涛,男,1968年生,教授,博士生导师,主要研究方向为机器学习、模式识别、图像处理.518模式识别与人
8、工智能27卷relationship,anditcanquicklydetectdefectswithahighaccuracy.KeyWordsDeepLearning,DefectDetection,RestrictedBoltzmannMachine(RBM),DeepBeliefNetwork(
此文档下载收益归作者所有