《td-scdma终端的低功耗研究及设计》

《td-scdma终端的低功耗研究及设计》

ID:37184974

大小:33.01 KB

页数:6页

时间:2019-05-21

《td-scdma终端的低功耗研究及设计》_第1页
《td-scdma终端的低功耗研究及设计》_第2页
《td-scdma终端的低功耗研究及设计》_第3页
《td-scdma终端的低功耗研究及设计》_第4页
《td-scdma终端的低功耗研究及设计》_第5页
资源描述:

《《td-scdma终端的低功耗研究及设计》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、移动终端的待机时间一直是业界关注的焦点问题之一。相对于2G系统,TD-SCDMA系统在提供更高的频谱利用率、更高的数据速率、更丰富多彩的多媒体业务的同时[1],其终端的功耗问题也更为严峻:复杂的基带数据处理、功放线性引入的低电源效率、多媒体应用所引入的音视频处理等,都使TD-SCDMA终端功耗问题变得更加棘手。TD-SCDMA终端的功耗受到无线环境、网络配置、协议栈控制以及终端软硬件方案、电源管理、芯片本身的低功耗设计及其工艺特性等诸多因素的影响,其中起决定性作用的则是终端本身的省电技术。正是基于这种现实,本文结合

2、TD-SCDMA系统及终端的技术特性,深入研究并实现了TD-SCDMlA终端在待机模式下的低功耗关键技术,这对于推动TD-SCDMA产业的发展有着重大的技术意义和现实意义。1TD-SCDMA系统中的协议栈状态及省电设计方案1.1RRC子层的状态及转换TD-SCDMA系统中的RRC子层位于协议栈的第三层,属于接入层,主要完成无线资源的控制和管理等功能。终端侧的RRC层主要完成的功能有小区选择、小区重选、接收广播系统信息、寻呼指示、建立,维护和释放RRC连接、无线接入承载的建立、重配置和释放UE测量等。RRC有两个基本

3、模式:空闲模式和连接模式。连接模式又可进一步分为CELL_DCH、CELL_FACH、CELL_PCH和URA_PCH几种状态[2]。RRC的连接模式和空闲模式间的状态转移如图1。连接模式下,当RRC状态为CELL_PCH和URA_PCH时,终端仍可支持类似于空闲模式下的较低功耗。如果终端开机后驻留在UTRAN小区上,则终端在空闲模式下建立RRC连接,从而进入连接状态(CELL_DCH或者CELL_FACH),进入连接模式的终端可以在不同的连接状态之间迁移。处于连接模式的终端可以通过释放RRC连接回到空闲模式。当已

4、经注册上某个小区且终端处于空闲模式下,终端可以使用非连续接收DRX(DiscontinuousReception)操作,这意味着在每个DRX周期终端只需要监听与寻呼相关的信息块,其他时间段不需要监听寻呼,从而达到省电的目的。RRC需要从系统信息中获得DRX的相关参数,并计算DRX周期,将其通知L1C。RRC协议层在实现中主要从以下两个方面降低终端的功耗:(1)计算寻呼消息的非连续性接收相关参数并将参数提供给物理层。(2)优化空闲模式下的过程,减少不必要的过程以降低功耗。1.2非连续接收(DRX)及相关参数的计算TD

5、-SCDMA空闲模式下的DRX周期取决于参数PBP,其值可以为0.08s、0.16s、0.32s、0.64s、1.28s、2.56s或5.12s,在CELL_PCH或URA_PCH模式下,DRX周期可以为0.64s、1.28s、2.56s或5.12s。在PS应用中,DRX周期可以由网络和终端共同商议决定[2][3]。DRX相关参数(如DRX周期、寻呼时段、寻呼消息位置等)的计算可参考文献[3]。图2表明了在一个DRX周期内,终端在仅需要监听寻呼唤醒并处于工作状态,而其他大部分时间里都可以关闭系统参考时钟进入深度睡眠

6、状态。由于TD-SCDMA是一个同步系统,所以终端醒来后必须再次与基站同步并且准确确定终端与基站之间的时间相对关系。当终端睡眠时,系统由低频的32kHz时钟来产生各种需要的时序和定时,设睡眠前计数器值为N10,睡眠后计数器值为N2,则醒来后的真正相对时间点应当为N1+(N2-N1)×312.5。由于32kHz晶体本身的精度有误差(通常为±20ppm/+50ppm),且其频率随温度变化而变化(约-0.044ppm/°C2),因此必须通过时间校准来补偿因低频时钟代替高频时钟产生的定时误差。1.3TD-SCDMA终端进入

7、睡眠过程的软件设计TD-SCDMA终端的整个睡眠进入和睡眠唤醒的过程及系统时钟的开关都是在ARM控制下进行,终端进入睡眠的基本流程可以概括为:(1)判断L1C是否为空闲状态。(2)L1C调度空闲状态下的任务(包括接收BCH、PICH/PCH和测量)。如果所有这些任务在下一DRX周期前都已完成,则L1C计算出睡眠时间并同时通知ModemIC进入睡眠。同时,L1C把计算出的睡眠时间告知ARM中的DPWS。当ARM中无任何任务需要处理时(如UART、键盘操作等),ARM中操作系统RTK的后台任务使ARM准备进入睡眠状态。

8、(3)ModemIC调用自己的睡眠过程进入睡眠,并设置其睡眠指示信号。(4)当ARM检测到ModemIC已经睡眠后,ARM进入睡眠状态。至此,整个系统进入睡眠状态,系统以32kHz的低频时钟工作,对ARM和ModemIC内部的睡眠定时器计数,直至系统被唤醒。1.4TD-SCDMA终端唤醒过程的软件设计终端的唤醒过程由ARM控制。当ARM睡眠定时器到时(正常唤

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。