欢迎来到天天文库
浏览记录
ID:37167214
大小:67.50 KB
页数:3页
时间:2019-05-21
《2012年普通高等学校招生全国统一考试(海南卷)数学(文科)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012年普通高等学校招生全国统一考试(海南卷)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)已知集合A={x
2、x2-x-2<0},B={x
3、-14、)(A)-1(B)0(C)(D)1(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)(B)(C)(D)(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-,2)(B)(0,2)(C)(-1,2)(D)(0,1+)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(A)A+B为a1,a2,…,aN的和(B)为a1,a2,…,aN的算术平均数(C)A和B分别是5、a1,a2,…,aN中最大的数和最小的数(D)A和B分别是a1,a2,…,aN中最小的数和最大的数开始A=xB=xx>A否输出A,B是输入N,a1,a2,…,aN结束x0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)(B6、)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,7、AB8、=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当09、3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且10、a11、=1,12、2a-b13、=,则14、b15、=(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单16、位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面17、BDC1分此棱柱为两部分,求这两部分体积的比。CBADC1A1(20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。(21)(本小题满分12分)设函数f(x)=ex-ax-2(Ⅰ)求f(x
4、)(A)-1(B)0(C)(D)1(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)(B)(C)(D)(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-,2)(B)(0,2)(C)(-1,2)(D)(0,1+)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(A)A+B为a1,a2,…,aN的和(B)为a1,a2,…,aN的算术平均数(C)A和B分别是
5、a1,a2,…,aN中最大的数和最小的数(D)A和B分别是a1,a2,…,aN中最小的数和最大的数开始A=xB=xx>A否输出A,B是输入N,a1,a2,…,aN结束x0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)(B
6、)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,
7、AB
8、=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当09、3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且10、a11、=1,12、2a-b13、=,则14、b15、=(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单16、位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面17、BDC1分此棱柱为两部分,求这两部分体积的比。CBADC1A1(20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。(21)(本小题满分12分)设函数f(x)=ex-ax-2(Ⅰ)求f(x
9、3S2=0,则公比q=_______(15)已知向量a,b夹角为45°,且
10、a
11、=1,
12、2a-b
13、=,则
14、b
15、=(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA(1)求A(2)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单
16、位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面
17、BDC1分此棱柱为两部分,求这两部分体积的比。CBADC1A1(20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。(21)(本小题满分12分)设函数f(x)=ex-ax-2(Ⅰ)求f(x
此文档下载收益归作者所有