浅探关节镜下盘状半月板损伤的治疗

浅探关节镜下盘状半月板损伤的治疗

ID:37166706

大小:303.00 KB

页数:67页

时间:2019-05-11

浅探关节镜下盘状半月板损伤的治疗_第1页
浅探关节镜下盘状半月板损伤的治疗_第2页
浅探关节镜下盘状半月板损伤的治疗_第3页
浅探关节镜下盘状半月板损伤的治疗_第4页
浅探关节镜下盘状半月板损伤的治疗_第5页
资源描述:

《浅探关节镜下盘状半月板损伤的治疗》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、CS276BTextInformationRetrieval,Mining,andExploitationLecture523January2003RecapToday’stopicsFeatureselectionfortextclassificationMeasuringclassificationperformanceNearestneighborcategorizationFeatureSelection:Why?Textcollectionshavealargenumberoffeatures10,000–1,

2、000,000uniquewords–andmoreMakeusingaparticularclassifierfeasibleSomeclassifierscan’tdealwith100,000soffeat’sReducetrainingtimeTrainingtimeforsomemethodsisquadraticorworseinthenumberoffeatures(e.g.,logisticregression)ImprovegeneralizationEliminatenoisefeaturesAvoi

3、doverfittingRecap:FeatureReductionStandardwaysofreducingfeaturespacefortextStemmingLaugh,laughs,laughing,laughed->laughStopwordremovalE.g.,eliminateallprepositionsConversiontolowercaseTokenizationBreakonallspecialcharacters:fire-fighter->fire,fighterFeatureSelect

4、ionYangandPedersen1997ComparisonofdifferentselectioncriteriaDF–documentfrequencyIG–informationgainMI–mutualinformationCHI–chisquareCommonstrategyComputestatisticforeachtermKeepntermswithhighestvalueofthisstatisticInformationGain(Pointwise)MutualInformationChi-Squ

5、areTermpresentTermabsentDocumentbelongstocategoryABDocumentdoesnotbelongtocategoryCDX^2=N(AD-BC)^2/((A+B)(A+C)(B+D)(C+D))UseeithermaximumoraverageX^2Valueforcompleteindependence?DocumentFrequencyNumberofdocumentsatermoccursinIssometimesusedforeliminatingbothveryf

6、requentandveryinfrequenttermsHowisdocumentfrequencymeasuredifferentfromtheother3measures?Yang&Pedersen:ExperimentsTwoclassificationmethodskNN(knearestneighbors;morelater)LinearLeastSquaresFitRegressionmethodCollectionsReuters-2217392categories16,000uniquetermsOhs

7、umed:subsetofmedline14,000categories72,000uniquetermsLtctermweightingYang&Pedersen:ExperimentsChoosefeaturesetsizePreprocesscollection,discardingnon-selectedfeatures/wordsApplytermweighting->featurevectorforeachdocumentTrainclassifierontrainingsetEvaluateclassifi

8、erontestsetDiscussionYoucaneliminate90%offeaturesforIG,DF,andCHIwithoutdecreasingperformance.Infact,performanceincreaseswithfewerfeaturesforIG,DF,andCHI.Mutual

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。