基于知识图谱的自适应学习系统设计与实现

基于知识图谱的自适应学习系统设计与实现

ID:37065685

大小:2.70 MB

页数:82页

时间:2019-05-17

基于知识图谱的自适应学习系统设计与实现_第1页
基于知识图谱的自适应学习系统设计与实现_第2页
基于知识图谱的自适应学习系统设计与实现_第3页
基于知识图谱的自适应学习系统设计与实现_第4页
基于知识图谱的自适应学习系统设计与实现_第5页
资源描述:

《基于知识图谱的自适应学习系统设计与实现》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、分类号:TP391单位代码:10183研究生学号:2015522031密级:公开吉林大学硕士学位论文(学术学位)基于知识图谱的自适应学习系统设计与实现DesignandImplementationofAdaptiveLearningSystemBasedonKnowledgeGraph作者姓名:朱艳茹专业:通信与信息系统研究方向:教育大数据指导教师:范亚芹培养单位:通信工程学院2018年6月—————————————————————基于知识图谱的自适应学习系统设计与实现—————————————————————DesignandImplementationofAdaptiv

2、eLearningSystemBasedonKnowledgeGraph作者姓名:朱艳茹专业名称:通信与信息系统指导教师:范亚芹副教授学位类别:工学硕士答辩日期:2018年6月2日未经本论文作者的书面授权,依法收存和保管本论文书面版本、电子版本的任何单位和个人,均不得对本论文的全部或部分内容进行任何形式的复制、修改、发行、出租、改编等有碍作者著作权的商业性使用(但纯学术性使用不在此限)。否则,应承担侵权的法律责任。吉林大学硕士学位论文原创性声明本人郑重声明:所呈交学位论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其

3、他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。学位论文作者签名:日期:年月日《中国优秀博硕士学位论文全文数据库》投稿声明研究生院:本人同意《中国优秀博硕士学位论文全文数据库》出版章程的内容,愿意将本人的学位论文委托研究生院向中国学术期刊(光盘版)电子杂志社的《中国优秀博硕士学位论文全文数据库》投稿,希望《中国优秀博硕士学位论文全文数据库》给予出版,并同意在《中国博硕士学位论文评价数据库》和CNKI系列数据库中使用,同意按章程规定享受相关权益。论文级别:■硕士□博士学科专业:通

4、信与信息系统论文题目:基于知识图谱的自适应学习系统设计与实现作者签名:指导教师签名:年月日作者联系地址(邮编):吉林大学通信工程学院(130012)作者联系电话:0431-85095243摘要基于知识图谱的自适应学习系统设计与实现随着“互联网+”和大数据战略的正式启动,互联网创新技术与各领域的深度融合已成为人们关注的焦点,同时也推动着我国教育事业的变革和创新。2015年是我国教育大数据元年,大量在线教育产品应运而生,为人们带来了极大便利。然而面对平台上海量的学习资源,学习者经常会出现网络迷航、认知过载以及知识碎片化等问题。在这种背景下,自适应学习概念的提出,为在线教育未来发

5、展带来了新的契机。目前,对于自适应学习的研究多集中在理论层面,对于系统技术实现上的关注还远远不够。国内在线教育产品多为数据统计和测试题库类型。虽然个别产品应用了相对复杂的逻辑推导,但离真正意义上的自适应学习还相差甚远。本文从学习者角度出发、充分考虑领域知识的结构特征,重点实现自适应学习系统中一系列大数据关键技术,以期为自适应学习的研究和应用提供参考。本文的主要工作如下:(1)基于自适应学习系统的功能需求分析,对系统的整体框架、工作流程和各单元模型进行设计。(2)基于知识图谱的关联特点完成领域模型的知识表达,给出知识图谱构建方法和应用实例。在此基础上利用FP-Growth算法

6、对学习路径进行关联规则挖掘,实现领域模型的动态更新。(3)参照我国学生模型构建标准设计学生模型的构建方法、构建流程及存储结构,基于IRT测试模型实现学生认知水平的测试和测试题库的构建。(4)基于SVR预测回归模型实现自适应引擎中路径达成度的预测,并完成SVR预测模型的训练、参数调优和预测工作。实验结果表明,在领域模型中,知识图谱可以完成知识图谱的清晰表达,FP-Growth算法可以实现知识点间关联规则的挖掘功能,考虑系统的复杂度和精准度,折中选择最小支持度0.03;在学生模型中,IRT测试模型给出的参数估计值符合正I常的学习规律,具备实用性;在自适应引擎模块中,确定了SVR

7、预测模型四个参数的最优组合:不敏感系数为0.05、惩罚系数为8、核函数为rbf和核参数为0.08,此时SVR预测模型的预测效果最佳。本文的主要贡献和创新点如下:(1)从领域知识结构出发,利用知识图谱完成知识结构的有效表达,为领域模型的构建提出了新的研究工具。利用关联规则挖掘算法实现模型的动态更新,充分考虑学生因素对领域模型影响,提高了模型的实用性。(2)本文提出基于SVR的预测回归模型实现自适应引擎功能,将机器学习思想与教育领域相融合,是对自适应学习系统研究的一次探索和创新,为相关研究者和开发者提供了新的研究思路。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。