八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版

八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版

ID:37054474

大小:285.88 KB

页数:4页

时间:2019-05-15

八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版_第1页
八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版_第2页
八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版_第3页
八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版_第4页
资源描述:

《八年级数学三角形中的边角关系命题与证明13.2命题与证明第3课时三角形的内角和的证明作业新版沪科版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3课时 三角形的内角和的证明知识要点基础练知识点1 三角形的内角和定理的证明与辅助线1.如图,在证明“△ABC内角和等于180°”时,延长BC至点D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是(D)A.数形结合B.特殊到一般C.一般到特殊D.转化知识点2 直角三角形的两锐角互余2.在Rt△ABC中,∠B是直角,∠C=22°,那么∠A的度数是(C)A.22°B.58°C.68°D.112°3.如图,

2、AC⊥BD,∠1=∠2,∠D=40°,求∠BAD的度数.解:∵AC⊥BD,∠1=∠2,∴∠1=45°,∠ACB=90°,∵∠D=40°,∴∠CAD=50°,∴∠BAD=∠1+∠CAD=95°.知识点3 有两个角互余的三角形是直角三角形4.三角形有一个角的度数是36°角的余角,另一个角是144°角的补角,那么这个三角形是(C)A.锐角三角形B.钝角三角形C.直角三角形D.无法确定5.如图,点E是△ABC中AC边上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?解:△ABC是直角三角

3、形.理由如下:∵ED⊥AB,∴∠ADE=90°,△ADE是直角三角形.∴∠1+∠A=90°.又∵∠1=∠2,∴∠2+∠A=90°,∴△ABC是直角三角形.综合能力提升练6.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为(B)A.65°B.55°C.45°D.35°7.如图,△ABC的角平分线CD,BE相交于点F,∠A=90°,EG∥BC,且CG⊥EG于点G.下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有(C)A.1个B.2个C.

4、3个D.4个8.将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数是(C)A.25°B.20°C.15°D.10°【变式拓展】把一副常用的三角板按如图所示的方式拼在一起,点B在AE上,那么图中的∠ABC= 75° . 9.如图,在△ABC中,∠BAC=90°,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是(A)A.3B.4C.5D.610.如图,在△ABC中,∠ACB=68°,若P为△ABC内一点,且∠1=∠2,则∠BPC=(D)A.68

5、°B.120°C.92°D.112°11.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC的平分线BE分别交CD,CA于点F,E,则下列结论正确的是(A)①∠1=∠2;②∠4=∠5;③∠A=∠4;④∠2与∠5互余.A.①③④B.②③④C.①②④D.①②③12.如图,∠1+∠2+∠3+∠4= 360° . 13.直角三角形两锐角的平分线相交所成的角的度数为 45°或135° . 14.如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是直角三角形,则此时∠A所有

6、可能的度数为 60°或90° . 15.如图,BD,CE是△ABC的高,BD和CE相交于点O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由.(3)若∠4=55°,∠ACB=65°,求∠3,∠5的度数.解:(1)直角三角形有:△BOE,△BCE,△ACE,△BCD,△COD,△ABD.(2)与∠2相等的角是∠1.理由如下:∵BD,CE是△ABC的高,∴∠1+∠A=90°,∠2+∠A=90°,∴∠1=∠2,∴与∠2相等的角是∠1.(3)∵∠ACB=65°,BD是高,∴∠3=90°-∠ACB=90

7、°-65°=25°,在△BOC中,∠BOC=180°-∠3-∠4=180°-25°-55°=100°,∴∠5=∠BOC=100°.16.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,CE是△ABC的角平分线.(1)求∠DCE的度数;(2)若∠CEF=135°,求证:EF∥BC.解:(1)∵∠B=30°,CD⊥AB,∴∠DCB=90°-∠B=60°.∵CE平分∠ACB,∠ACB=90°,∴∠ECB=∠ACB=45°,∴∠DCE=∠DCB-∠ECB=60°-45°=15°.(2)∵∠CEF=135°,∠

8、ECB=∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.拓展探究突破练17.如图,在△ABC中,O是高AD和BE的交点.(1)观察图形,试猜想∠C和∠DOE,∠C和∠AOE之间具有怎样的数量关系?请说明理由.(2)在这个解题过程中包含这样一个规律:如果一个角的两边分别垂直于另一个角的两边,那么这两个角的数量关系为 相等或互补 .

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。