欢迎来到天天文库
浏览记录
ID:36966852
大小:37.43 KB
页数:5页
时间:2019-05-02
《等差数列教学设计岳外付云谦》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、等差数列通项公式教学设计从容说课本节课的主要内容是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质;让学生明白一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是一个等差数列,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学
2、过程中的主体地位,通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点,通过等差数列的图象的应用,通过等差数列通项公式的运用,渗透方程思想,进一步渗透数形结合思想、函数思想.通过引导学生积极探究,主动学习,提高学生学习积极性,也提高了课堂的教学效果.教学重点等差数列的定义、通项公式、性质的理解与应用.教学难点等差数列的性质的应用、灵活应用等差数列的定义及性质解决一些相
3、关问题.教具准备多媒体及课件三维目标一、知识与技能1.明确等差中项的概念;2.进一步熟练掌握等差数列的通项公式及推导公式,能通过通项公式与图象认识等差数列的性质;3.能用图象与通项公式的关系解决某些问题.二、过程与方法1.通过等差数列的图象的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想;2.发挥学生的主体作用,讲练相结合,作好探究性学习;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.通过对等差数列的研究,使学生明确等差数列与一
4、般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点;2.通过体验等差数列的性质的奥秘,激发学生的学习兴趣.教学过程导入新课师同学们,上一节课我们学习了等差数列的定义,等差数列的通项公式,哪位同学能回忆一下什么样的数列叫等差数列?生我回答,一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即an-an-1=d(n≥2,n∈N*),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示).师对,我再找同学说一说等差数列{an}的通项公式的内容是什么?生1等差
5、数列{an}的通项公式应是an=a1+(n-1)d.生2等差数列{an}还有两种通项公式:an=am+(n-m)d或an=pn+q(p、q是常数).师好!刚才两位同学说得很好,由上面的两个公式我们还可以得到下面几种计算公差d的公式:①d=an-an-1;②;③.你能理解与记忆它们吗?生3公式②与③记忆规律是项的值的差比上项数之间的差(下标之差).[合作探究]探究内容:如果我们在数a与数b中间插入一个数A,使三个数a,A,b成等差数列,那么数A应满足什么样的条件呢?师本题在这里要求的是什么?生当然
6、是要用a,b来表示数A.师对,但你能根据什么知识求?如何求?谁能回答?生由定义可得A-a=b-A,即.反之,若,则A-a=b-A,由此可以得a,A,b成等差数列.推进新课我们来给出等差中项的概念:若a,A,b成等差数列,那么A叫做a与b的等差中项.根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项.9是7和11的等差中项,也是5和13的
7、等差中项.[方法引导]等差中项及其应用问题的解法关键在于抓住a,A,b成等差数列2A=a+b,以促成将等差数列转化为目标量间的等量关系或直接由a,A,b间的关系证得a,A,b成等差数列.[合作探究]师在等差数列{an}中,d为公差,若m,n,p,q∈N*且m+n=p+q,那么这些项与项之间有何种等量关系呢?生我得到了一种关系am+an=ap+aq.师能把你的发现过程说一下吗?生受等差中项的启发,我发现a2+a4=a1+a5,a4+a6=a3+a7.从而可得在一等差数列中,若m+n=p+
8、q,则am+an=ap+aq.师你所得的这关系是归纳出来的,归纳有利于发现,这很好,但归纳不能算是证明!我们是否可以对这归纳的结论加以证明呢?生我能给出证明,只要运用通项公式加以转化即可.设首项为a1,则am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,ap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d.因为我们有m+n=p+q,所以上面两式的右边相
此文档下载收益归作者所有