欢迎来到天天文库
浏览记录
ID:36906263
大小:2.69 MB
页数:19页
时间:2019-05-18
《精校解析Word版---河北省唐山市高二上学期期末考试A卷数学(文)试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省唐山市高三年级上学期期末考试A卷数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线的焦点到准线的距离等于()A.2B.4C.6D.8【答案】B【解析】【分析】根据抛物线的标准方程得,求出,即得结论.【详解】抛物线中,即,所以焦点到准线的距离是.故选B.【点睛】本题考查抛物线的标准方程,抛物线的准线方程是,焦点坐标是焦点到准线的距离为.本题属于基础题.2.命题“,”的否定是()A.,B.,C.,D.,【答案】
2、A【解析】【分析】利用全称命题的否定是特称命题,写出结果即可.利用全称命题的否定是特称命题,写出结果即可.【详解】解:因为全称命题的否定是特称命题,所以,命题“,”的否定是:,.故选:A.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】解:∵双曲线,即,它的a,b=1,焦点在y轴上,而双曲线的渐近线方程为y=±,∴双曲线的渐近
3、线方程为y=±x,故选:C.【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想.4.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】根据不等式之间的关系结合充分条件和必要条件的定义即可得到结论.【详解】解:由,解得x<1或x>3,此时不等式x<1不成立,即充分性不成立,若x<1,则x<1或x>3成立,即必要性成立,故“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条
4、件和必要条件的判断,根据不等式之间的关系是解决本题的关键.5.圆与圆的位置关系是()A.相离B.外切C.相交D.内切【答案】D【解析】【分析】将两圆的方程分别化为标准方程,找出圆心坐标和半径,利用两点间的距离公式求出两圆心的距离d,可得出d=R﹣r,可得出两圆内切.【详解】圆与圆化为标准方程得:(x﹣3)2+(y+2)2=4,(x﹣7)2+(y﹣1)2=49,∴圆心坐标分别为(3,﹣2)和(7,1),半径分别为r=2和R=7,∵两圆心距d5,∴d=R﹣r,则两圆的位置关系是内切.故选:D.【点睛】此题考查了圆
5、与圆的位置关系及其判定,圆与圆的位置关系可以由圆心距d与R及r的关系来判定,当d<R﹣r时,两圆内含;当d=R﹣r时,两圆内切;当R﹣r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.6.设为三个不同的平面,为两条不同的直线,则下列命题中假命题是()A.当时,若,则B.当,时,若,则C.当,时,若,则是异面直线D.当,,若,则【答案】C【解析】【分析】根据空间线面垂直、面面垂直、面面平行的性质定理对选项分别分析选择.【详解】对于A,根据平面与平面平行、垂直的性质,可得正确;对于B
6、,根据平面与平面平行、线面垂直的性质,可得正确;对于C,可能异面,也可能平行,故错误;对于D,由,可知,又,所以,可得正确.故选:C【点睛】本题考查了空间线面垂直、面面垂直、面面平行的性质定理和判定定理的运用;牢固掌握运用定理是关键.7.正方体中,的中点为,的中点为,则异面直线与所成的角为()A.B.C.D.【答案】D【解析】【分析】根据异面直线所成角的定义,把直线CN平移和直线B1M相交,找到异面直线B1M与CN所成的角,解三角形即可求得结果.在平移直线时经常用到遇到中点找中点的方法.【详解】解:取AA1的
7、中点E,连接EN,BE角B1M于点O,则EN∥BC,且EN=BC∴四边形BCNE是平行四边形∴BE∥CN∴∠BOM就是异面直线B1M与CN所成的角,而Rt△BB1M≌Rt△ABE∴∠ABE=∠BB1M,∠BMB1=∠AEB,∴∠BOM=90°.故选:D.【点睛】此题是个基础题.考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想方法.8.若直线与曲线有公共点,则的最小值为()A.B.C.D.0【答案】C【解析】【分析】曲线表示以(0,0)为圆心,1为半径的圆(
8、x轴上方部分),求出相切时,k的值,即可求得结论.【详解】解:如图所示,曲线表示以(0,0)为圆心,1为半径的圆(x轴上方部分)当直线y=k(x﹣2)与曲线相切时,d(k<0),∴k∴k最小值故选:C.【点睛】本题考查直线与圆的位置关系,考查学生分析解决问题的能力,属于基础题.9.某三棱锥的三视图如图所示,此三棱锥的体积为,则三棱锥的所有棱中,最长棱的长度为()A.B.C.D.【答案】B【解析】【分
此文档下载收益归作者所有