欢迎来到天天文库
浏览记录
ID:36906155
大小:622.44 KB
页数:16页
时间:2019-05-18
《精校解析Word版---江苏省南京市高一上学期期末调研数学试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com江苏省南京市高一年级(上学期)期末数学试卷一、填空题(本大题共10小题,共50.0分)1.已知全集,集合,,则_____【答案】【解析】【分析】直接利用并集、补集的运算即可.【详解】解:A∪B={0,1,3};∴{2,4}.故答案为:{2,4}.【点睛】本题考查列举法的定义,以及并集、补集的运算.2.函数f(x)=的定义域为______.【答案】【解析】【分析】根据二次根式的性质得到关于x的不等式,解出即可.【详解】解:由题意得:2x﹣4≥0,解得:x≥2,故函数的定义域是[2,+∞),故答案为:[2,+∞).【点睛】本题考查了函数的定义域问题,考查二次根
2、式的性质,是一道基础题.3.已知角的终边经过点,则的值为_____【答案】【解析】【分析】利用任意角的三角函数的定义,求得sinα、tanα的值,可得的值.-16-【详解】解:∵角α的终边经过点P(﹣5,12),∴sinα,tanα,则,故答案为:.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.4.已知向量,,且,则实数的值为_____【答案】【解析】【分析】直接由向量共线的坐标运算得答案.【详解】解:∵量(4,﹣3),(x,6),且∥,则4×6﹣(﹣3)x=0.解得:x=﹣8.故答案为:﹣8.【点睛】平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的
3、坐标表示等联系在一起,要特别注意垂直与平行的区别.若(a1,a2),(b1,b2),则⊥⇔a1a2+b1b2=0,∥⇔a1b2﹣a2b1=0,是基础题.5.已知,则的值为_____【答案】【解析】【分析】根据对数的运算性质和对数式和指数式的互化即可求出.【详解】解:x=log612﹣log63=log64,∴6x=4,故答案为:4.【点睛】本题考查了对数的运算性质和对数式和指数式的互化,属于基础题.-16-6.如图,在直角三角形中,,,,垂足为,则的值为_____【答案】【解析】【分析】把代入化简通过向量的数量积的定义求解即可.【详解】解:在直角三角形ABD中,BD=ABcos6
4、0°=1••()•4+2×1×cos120°=3.故答案为:3.【点睛】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力7.将函数的图象向左平移个单位后,得到函数的图象,则的值为_____【答案】【解析】【分析】根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,可得g(0)的值.【详解】解:将函数f(x)=2sin2x的图象向左平移个单位后,得到函数g(x)=2sin(2x)的图象,则g(0)=2sin,故答案为:.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.已知a>0且a≠1,若函数f(x)=的值域为[1,
5、+∞),则a的取值范围是______.【答案】-16-【解析】【分析】利用分段函数的表达式,结合函数的值域,列出不等式求解a的范围即可.【详解】解:a>0且a≠1,若函数f(x)的值域为[1,+∞),当x≤2时,y=3﹣x≥1,所以,可得1<a≤2.故答案为:(1,2].【点睛】本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.9.已知向量与满足,.又,,且在时取到最小值,则向量与的夹角的值为____【答案】【解析】【分析】由向量的模的运算得:
6、
7、2=[(1﹣t)t]2=(5+4cosθ)t2﹣2(1+2cosθ)t+1,由二次函数的最值用配方法可得解.【详
8、解】解:设向量与的夹角的值为θ,由t,(1﹣t),(1﹣t)t,
9、
10、2=[(1﹣t)t]2,=(1﹣t)2+4t2﹣4t(1﹣t)cosθ=(5+4cosθ)t2﹣2(1+2cosθ)t+1,又5+4cosθ>0,所以当t取得最小值.解得:cosθ,又θ∈[0,π],-16-所以θ,故答案为:【点睛】本题考查了平面向量的数量积及二次函数的最值问题,属中档题.10.已知函数,.若使不等式成立的整数恰有个,则实数的取值范围是____【答案】【解析】【分析】作出y=g(x)的图象,讨论k=0,k<0,k>0,结合抛物线开口方向和整数解的情况,即可得到所求范围.【详解】解:g(x)=si
11、n的周期为4,作出y=g(x)的图象,当k=0时,f(x)=﹣x,不等式f(x)<g(x)成立的整数x有无数个;当k<0时,f(x)的图象为抛物线,且开口向下,恒过原点,不等式f(x)<g(x)成立的整数x有无数个;当k>0,可得不等式f(x)<g(x)成立的整数x=1,当f(x)的图象经过(1,1),可得k﹣1=1,即k=2;f(x)的图象经过(2,0),即4k﹣2=0,解得k.由题意可得k<2.故答案为:[,2).【点睛】本题考查函数方程的转化思想和数形结合思想,考查正弦函数
此文档下载收益归作者所有