资源描述:
《小波阈值神经网络在信号去噪及预测中的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、25ज3௹॥ᇅંაႋႨVol.25No.32008୍6ᄅControlTheory&ApplicationsJun.2008໓໓ᅣᅣᅣщщщ:1000−8152(2008)03−0485−07ཬཬѯѯѯᚐᚐᚐᆴᆴᆴപപപࣜࣜࣜຩຩຩᄝᄝᄝྐྐྐಀಀಀᄮᄮᄮࠣࠣࠣყყყҩҩҩᇏᇏᇏႋႋႋႨႨᖳၴې1,ໍდ2,Џ3(1.Кࣘࢌ๙ն࿐ྐ༏॓࿐࣮෮,Кࣘ100044;2.॓ն࿐ྐ༏۽ӱა॓࿐ჽ,К430081;3.ᇏ॓ն࿐॥ᇅ॓࿐აК,༢ӱ۽430074)ᅋေ:ิԛਔ၂ᇕཬѯᚐᆴപࣜຩଆ(wave
2、letthresholdneuralnetwork,WTNN),ؓކቔൔࢤ൬ূղྐࣉྛಀᄮބყҩ.ᆃᇕຩଆϜཬѯቋႪᚐᆴಀᄮఖࡆപࣜຩᇏ,ؓջᄮྐऎႵཬѯቋႪᚐᆴಀᄮބყҩٳྛࣉمෘؓݖ๙,Ցః.ࡥࣚӱщ,مෘ߄ࡥॖ,ܒᇗҪֆቔඔ༢ѯཬؓ.ିۿ༅,ԛਔቋႪᚐᆴࠣಃᆴטᆜ܄ൔ.ቋު๙ݖؓཌྟטྐಀᄮࠣభཟ၂ყҩൌဒࢲݔॖၛुԛ,ຩൻೆٳљູջႵۚථϢᄮല~ۚථջཋᄮല~ೋ০ᄮലཌྟטྐൈWTNNࢲݔनႪႿ০ႨDonohoᚐᆴࣉྛಀᄮުᄜყҩࢲݔ.ܱՍ:ቋႪᚐᆴ;പࣜຩ;ყҩ;ྐಀᄮᇏোٳ:TP27
3、3໓ངѓ്:ATheapplicationofwaveletthresholdneuralnetworkinthede-noisingandpredictionCENYi-gang1,WEIYu2,SUNDe-bao3(1.InstituteofInformationScience,BeijingJiaotongUniversity,Beijing100044,China;2.SchoolofInformationEngineering&Technology,WuhanUniversityofScience&Techno
4、logy,WuhanHubei430081,China;3.DepartmentofControlScience&Engineering,HuazhongUniversityofScienceandTechnology,WuhanHubei430074,China)Abstract:Awaveletthresholdneuralnetwork(WTNN)modelisproposedfordenoisingandpredictionofcooperativelyreceivedradarsignals.ThisWTNNin
5、corporatesawaveletdenoisinglayerwithoptimalwaveletthresholdsintotheneuralnetwork,forsignaldenoisingandpredicting.Thetrainingalgorithmissimplifiedbythesingle-layerreconstructionofwaveletcoefficients,leadingtoacompactprogramming.Byanalyzingthetrainingalgorithm,wederiv
6、ethetuningformulasforsearchingoptimalthresholdsandnetworkweights.Theresultsofdenoisingandone-stepaheadpredictionforalinearfrequencymodulationsignalwithwhiteGaussnoise,Gaussband-limitednoiseorRayleighnoiseshowthattheWTNNperformsmuchbetterthanthemethodofDonoho-thres
7、holdfordenoisingandprediction.Keywords:optimalthreshold;neuralnetwork;prediction;signalde-noising1ႄႄ(Introduction)τjູjҪᚐᆴ,dj,kູjҪ༥ࢫ༢ඔ,d˜j,kູᚐᆴགྷൌൗࢸᇏᄮല҂ॖх૧,ྐಀᄮ൞ଢభԩުjҪ༥ࢫ༢ඔ.√၂۱࣮ಣ.ಀᄮ༵ေࣉྛ༢ࡹଆ,ᆃିࠞնࣜDonoho௴ൡᚐᆴູτj=ˆσj2lnN,ھᚐิശಀᄮིݔ[1].Donohoิԛਔ٤ཌྟཬѯᚐᆴಀᆴᆺ൞ᄮല၂۱ܙ࠹.൳Мࣟᄮല႕ཙ
8、ࢠն,ၹՎᄮ[2,3],ܼمٚᆴᚐႪቋࠆᅳ࿙ႋᆌ؟ᄮಀᆴᚐѯཬ,భଢ.]5,4]Ⴈႋٗ.Ч໓ิԛ၂ᇕྍھ,é)WTNN(ຩࣜപᆴᚐѯཬç:ຩࣜപק၂҂ᆴᚐohonoD,ലᄮႵؓ,ലᄮϢථۚႿؓຩିࢠಀᄮིݔ.ᚐᆴಀᄮЇও႗ᚐᆴაೈᚐࠢӮਔཬѯᚐᆴಀᄮ,ಀᄮაྐყҩႨ၂ᆴ,ఃᇏೈᚐᆴٚمູ༂