资源描述:
《线性代数答案(人大出版社,第四版)赵树嫄主编》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、-线性代数习题习题一(A)1t22t2221,(6)1t21t2(1t)4t1(1t2)22t1t21t21t2(7)1logbalogab102,(3)-7(4)0k344,1k0k2k0,k0或者k1.0k131x5,4x02x24x0,x0且x2.10x8,(1)4(2)7(3)13n(n1)(4)N(n(n-1)⋯21)=(n-1)+(n-2)+⋯+2+1=10,列号为3k42l,故k、l可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5.12,(1)不等于零的项为a13a22a34a411(2)a12a23a34...an1,nan1(1)N(23
2、4...n1)n!(1)n1n!13,(3)3421535215c2c1342151000r1r26123061230002809229092280921000280921000(4)将各列加到第一列,2(xy)yxy1yxyD2(xy)xyx2(xy)1xy--2(xy)xy1xyx--1yxy2(xy)0xy2(x3y3)0xyx17,(1)从第二行开始每行加上第一行,得到11111111111102221111002.....8211110002(2)r4r3,r3r2,r2r1⋯111111111234r4r30123...113610013614102001410(3)各列之和
3、相等,各行加到第一行⋯18,(3)22401120r24r111201120413541350355r32r40164312323123r33r120483rr200105r42r1242051205102110211112011201120r32r40164r42r30164r47r3100164r21021r21021r32r400027r400r400021100137001141120100164270r3r4001140002720,第一行加到各行得到上三角形行列式,123n026n2003n2n!--000n21,各行之和相等,将各列加到第一列并且提出公因式(n1)x--1x
4、xxx10xxx(n1)x从第二行开始各行减去第一行得到1xx0x1xxx01xxxx0x000(n1)x(n1x)(n11)nx1n(11)n(nx1)000x00000x22,最后一列分别乘以a1,a2,...an1再分别加到第1,2,⋯n-1列得到上三角形行列式xa1a1a2a2a3an1an10xa2a2a3an1an100xa3an1an1a1)(xa2)...(xan)(x000xan10000123,按第一列展开a1000111111110a2000a200a1000Dn1a00000a3000an1000an100000an000an000an1111111111a100
5、00a100000a2000n20a2000000a4...(1)00a3000000an0000an10a0a1a2...ana2a3a4...ana1a3a4...an...a1a2a3...an1n1)a1a2...an(a0aii1--24,将第二列加第一列,然后第三列加第二列,⋯.第n列加第n-1列,最后按第一行展开。--a100...00a100...000a2a2...000a20...00....................................D....................................000...anan000...an01
6、21...11123...nn1(1)n(n1)a1a2...an.1123112312x222r2r101x2002)(4x2)025,(1)r4r3(1x231523152319x20004x2x1x2(2)各行之和相等⋯(3)与22题类似⋯(4)当x0,1,2,3.2n时,代入行列式都会使行列式有两行相同,所以它们都是方程的根。1040140140211228,A41A42A43A44(6)212(6)0301806001111111111111129,A11A12A13A14dcbb其中1,3两行对应成比例,所以为零.bbbbcdad32,从第二行开始每一行乘以(-1)加到上一行
7、然后按第一列展开1234n011111123n101x1111x12n2001x11--D1xx1n30001x11xxx2000011xxx11xxx1--111111x1111(1)n101x111000110001x1x0000001xx00000riri101xx0000001xx000(1)n1xn2(1)n1i1,2...n100000x0000001x133,按第一列展开--ab0000ab0000a00D0000ab